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 תקציר

 פורייה ספקטרלית של ספקטרומטרההרזולוציה  לשיפוראנו מציגים גישה חדשה בעבודה זו 

FT-IR))  שונות ותאינטרפרוגרמהמשלב . פיתחנו אלגוריתם חדש מדיויממבלי להגדיל את ,

 . רציפהאינטרפרוגרמה  ןאשר מייצר מה(, OPD) הפרשי מרחקים אופטיים שוניםשנדגמו ב

ידי כך לשפר את הרזולוציה -ועל להאריך את האינטרפרוגרמה המקוריתבאופן זה הצלחנו 

הדגמנו את הפתרון באמצעות שילוב . מבלי להגדיל אותו ,הספקטרלית של הספקטרומטר

  .FT-IRעם  הריוטמהוד אופטי מסוג תא 

FT-IR רפרומטר מייקלסון בעל זרוע סורקת הוא ספקטרומטר פורייה המבוסס על אינט

בזרוע  הריוטמסוג תא אופטי המהוד . התקנו את האינטפרוגרמה ביחס לזרוע ייחוסהמייצרת 

    . פיתחנושההדבקה אלגוריתם הייחוס, וביצענו שילוב אינטרפרוגרמות באמצעות 

מובהקים שאינם  דרך בעל אופניו מהוד אופטי המבוסס על מראות קעורותתא הריוט הוא 

נומרית  ,גרת המחקר ביצענו גם חקירה תיאורטיתמסבתלויים באופן ליניארי בגודל התא. 

 . FT-IR-ל זרוע ייחוסהוא יכול לשמש כוכיצד אם הכדי להבין , תא הריוט וניסויית של

בתא לבין גודל  דרך האופטית הנעשיתאת הקשר בין היאורטית המתארת תמשוואה מצאנו 

גודל את שמר מסימולציה וניסוי. בנוסף, מצאנו כי תא הריוט בדקנו אותה באמצעות ו ,התא

 משרעת ופאזה.משמר , אבל לא חיצוניתלמערכת אופטית את המיקום שלה ביחס קרן וה

שבו  FT-IR-באמצעות בניית מערכת הכוללת תא הריוט המשולב ב והניסוי בוצעהסימולציה ו

ראשוניים של הניסויים האלגוריתם ההדבקה והמשוואה התיאורטית שפיתחנו .  מומשו

יקה. טטופחברת מטר של -ננו 780ניאון ומקור של -עם מקור הליום בוצעו FT-IRההריוט 

עוקבת  (FT-IRהריוט המערכת ) הרזולוציה הספקטרלית של כיהראו  סימולציהתוצאות ה

חלופה כ שמשיכול ל FT-IRשהריוט  למדותמ הניסוי תוצאות .רגיל FT-IR-ל מגמה זהה אחר קו

 סטנדרטי. FT-IR-ל
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Abstract

We present a new approach to enhance the spectral resolution of a FT-IR spectrometer

without increasing it’s length. We developed a new algorithm for combining inter-

ferograms, sampled at different optical path differences (OPD’s), to form a continues

interferogram. Thus, effectively extend the length of the original interferogram. The

multipass FT-IR is a FT-IR spectrometer based on a Michelson interferometer with one

moving arm and one reference arm made of a multipass cell. This FT-IR employs our al-

gorithm for combining the FT-IR interferograms, collected relative to a set of multipass

cell modes. We demonstrated the multipass FT-IR with a Herriott cell as a multipass

cell. The Herriott cell is a curved mirror resonator that has distinct OPD modes that

non linearly depend on the size of the cell. We studied the Herriott cell theoretically,

numerically and experimentally in order to understand whether it can serve as a set

of references for the FT-IR. We found a theoretical formula that describe the relation

between the OPD done in the cell and the cell size and compared it with a numerical

simulation and experiment. Additionally, we found that the Herriott cell conserve a

beam’s size and alignment with relation to an outside optical system, but not amplitude

and phase. We studied a proof-of-concept system of a Herriott FT-IR numerically and

experimentally in order to test the combination algorithm and find it’s spectral reso-

lution limit. The proof of concept simulation results shows that the Herriott FT-IR’s

spectral resolution follows the same trend as a standard FT-IR. The preliminary experi-

mental research of the Herriott FT-IR was conducted with a Helium-Neon source and a

Toptica 780 nm source. The results imply that the Herriott FT-IR can be an alternative

to the standard FT-IR.



Abbreviations

OPD Optical Path Difference

MOPD Maximal Optical Path Difference

FWHM Full Width Half Maximum

FT-IR Fourier Transform Infra Red

HeNe Helium Neon
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Introduction

Optical spectroscopy is a widely used thecnique for non-invasive characterisation of

materials and phenomena, via the study of the interaction between light and matter.

Spectroscopic techniques are used in many fields of science. For example: imaging and

characterizetion of biological tissues [1–3], monitoring biological processes [4], character-

izetion of molecules and polymers [5], detection of ingredients in drugs, mesureing at-

mospheric compositions for envairomental studys [6], characterization of nano-structures

[7, 8], topological phases [9], and electronic structure [10] in physics.

Figure 1: Examples for spectroscopic measurements. Figure A [8] shows characterization of a
gold nano-disk. Figure B [2] shows a comparison of normal and cancerous cells in a FT-IR
spectrum and a microscope. Figure C [1] shows the molecular information contained in Raman
spectrum of dried HeLa cells. Figure D [10] shows the Band structure of a graphene bilayer
and the corresponding conductivity for wavenumber.

Most spectroscopic techniques belong to one of two categories: dispersive and interfero-

metric spectrometers [11]. Dispersive spectrometers receive spectrum by separating the

spectral frequencies of light. Usually, these spectrometers angularly divide light via a

1
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dispersive optical element such as a prism or a grating. The light is then projected on a

screen or through a slit, where the wavelength is matched to a specific position in which

the intensity of the light is registered.

Interferometric spectrometers receive spectrum by analysing an interference pattern ei-

ther by spatial separation like the fabry-perot spectrometer or Fourier transformation

like the FT-IR. The Fourier Transform Infra-Red (FT-IR) is one of the most common

interferometric spectrometers. In a standard FT-IR spectrometer, an interference sig-

nal of a Michelson interferometer is sampled as a function of a changing optical path

difference (OPD) also known as interferogram. The interferogram is then Fourier trans-

formed from space domain to frequency domain in order to get the spectrum. The

resolution of this spectrometer is proportional to the inverse of its largest optical path

difference. Therefore, in order to obtain a high spectral resolution FT-IR, one must have

a large sized FT-IR spectrometer. Or else, have a small sized FT-IR with low spectral

resolution. And this is the FT-IR’s resolution-size trade-off.

Figure 2: Schematic representation of the two spectrometer types. Figure A show a
dispersive spectrometer with a prism as the dispersive element. Figure B shows a FT-IR based
on a Michelson interferometer as an example for an interferometric spectrometer. The right
side of the figure shows the spectrum acquisition process for both spectrometers: the spectrum
of the dispersive spectrometer is determined by the position of light on the screen and for the
FT-IR spectrometer, the spectrum is calculated according to the interferogram

In this thesis we tried to provide a solution for the resolution-size trade-off of the FT-IR

spectrometer. To do so, we embedded a curved mirror resonator (a.k.a “Herriott cell”) in

the fixed (reference) arm of the interferometer. The Herriott cell can provide long OPD
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folded in space. Thus, by tuning the Herriott cell’s OPD, the fixed interferometer arm

can provide multiple references for the moving arm. Therefore, making high spectral

resolution amenable to spatially constrained systems.

The Herriott cell has distinct optical path modes that have a one to one, non linear

relation to the cell length. The research of the Herriott cell so far focused on the shape

and position of the Herriott cell modes and the Herriott cell was mainly applied as a long

optical path generator in a single mode fashion [12]. We also investigated the effects of

a Herriott cell on a Gaussian beam and whether it can be used in an optical system in a

multi-mode fashion. To do so, we’ve studied the Herriott cell theoretically, numerically

and experimentally. We have found that the Herriott cell conserve a Gaussian beam’s

size and can be tuned to conserve an optical system alignment, but beam output of

different Herriott cell modes differ in amplitude. Additionally, our theoretical formula

for the Herriott cell mode-OPD and simulation based on Herriott’s mode shape are

compatible with the experimental Herriott cell.

Our research of the FT-IR focused on two main fronts: connecting a Herriott cell in a

multi-mode fashion to a standard FT-IR optical system, and the effects on the FT-IR

spectrum. To do so, the Herriott FT-IR was researched for the purpose of finding out

how to correctly combine different FT-IR signals and what is the resolution limit of the

Herriott FT-IR. We have designed a unique signal processing algorithm for combining the

Herriott FT-IR interferograms and correcting amplitude and phase distortions generated

by the Herriott cell. In order to test the Herriott FT-IR resolution limit, we built a proof-

of-concept system comparing the spectrum of monochromatic light measured in a single

mode Herriott FT-IR for reference and a multi-mode Herriott FT-IR with the same

maximal OPD. The proof of concept simulation results showed that the resolution limit

of the Herriott FT-IR is similar to the standard FT-IR resolution limit. Furtheremore,

the resolution of combining the Herriott FT-IR interferograms is equal to the reference

resolution. The experimental results with Helium-Neon source showed weak similarity

to the simulation results. Although, due to the spectral width of the source the results

are not unambiguous. The experimental results with the Toptica 780 nm source was

inconclusive due to mechanical noise setting and upper limit on the spectral resolution

much higher then the difference between the OPD changes.

The results imply that a Herriott FT-IR can be a solution for the size-resolution trade-

off of the FT-IR spectrometer, and many research facilities with spatial constraints can

benefit from a compact, high resolution FT-IR spectrometer.



Chapter 1. Background

1.1. Beam profiles and optical interference

A general form of an Electromagnetic field can be written as [13]

~E = E0e
iφ

where the amplitude E0 and phase φ are constants.

Plane wave

A plane wave is an EM wave whose wave front uniformly propagates in time and space

[13] . The complex phase of a plane wave propagating in the ẑ direction is:

φ = kz − ωt (1.1)

where k = 2π
λ = 2πσ is the wavenumber and ω is the frequency. Therefore the electric

field of a plane wave can be written as:

~Ein(~r, t) = E0e
i(2π~σ~r−ωt) + C.C (1.2)

Gaussian beam

A Gaussian wave is an EM wave whose wave front present a Gaussian amplitude and

phase [14], see figure 1.1. This beam is a solution of the paraxial Helmholtz equation,

for a wave propagating in the ẑ direction:

~Ein(r, z, t) = E0
w0

W (z)
e
−r2
W2(z) e

−i(2π~σ
(
z+ r2

2R(z)
−ψ(z)

)
−ωt)

(1.3)

4
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Therefore the complex phase of a Gaussian beam propagating in the ẑ direction will be:

φ = 2π~σ

(
z +

r2

2R(z)
− ψ(z)

)
− ωt (1.4)

Where r2 = x2 +y2 is the radial distance from the center of the beam, W (z) is the beam

radius at distance z from the beam focus ,w0 = W (0) is the waist radius - the minimal

radius size of the beam at the focus, R(z) is the radius of curvature of the beam at

distance z from the beam focus and ψ(z) is the Gouy phase.

Figure 1.1: Gaussian beam propagating at direction ẑ with w0 at the origin

By defining a constant known as the beam Rayleigh range and marking the distance

zR from the focus in which W (zR) =
√

2w0 the mathematical terms of the beam z

dependent parameters are generated:

zR =
πw2

0

λ

R(z) = z +
z2
R

z

W (z) = w0

√
1 +

z2
R

z2

q(z) = z + izR =
1

R
− iλ

πw2(z)
complex beam parameter

(1.5)
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Ray Transfer Method

The ray transfer method or ABCD matrix method [13, 14] uses the assumption of

circularly symmetric rays and optical components to trace EM waves through optical

systems. The ray can be described by its distance y, and angle θ with respect to the

optical axis ẑ.

(
y

θ

)

This method describes an input ray entering an optical system and output ray exiting

the system in a linear relation under small angle approximation (sinθ ' θ):

y2 =At1 +Bθ1

θ2 =Ct1 +Dθ1

(1.6)

The set of equations in 1.6 can be written in a matrix form:(
y2

θ2

)
=

(
A B

C D

)(
y1

θ1

)
(1.7)

It is convenient to represent each optical component with a matrix and then represent

the system as the multiplication results of its parts. Each component matrix can be

found by the set of equations in 1.6 or by:

A =
y2

y1

∣∣∣∣
θ1=0

B =
y2

θ1

∣∣∣∣
y1=0

C =
θ2

y1

∣∣∣∣
θ1=0

D =
θ2

θ1

∣∣∣∣
y1=0

(1.8)

For example, two basic components in an optical system: free space propagation and a

thin lens (or a curved mirror) [14].

Tprop =

(
1 d

0 1

)
Tlens =

(
1 0

− 1
f 1

)
(1.9)

where d is the distance of propagation and f is the focal length of the lens (or curved

mirror).
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Handling a Gaussian beam is made easier to implement in the matrix method when

considering the complex beam parameter defined by equation 1.5. When defining the

Gaussian ray as

(
q

1

)
[14, 15], the output ray will receive the form:

q2 =
Aq1 +B

Cq1 +D
(1.10)

and from 1.5 and the remaining beam parameters can be calculated.

Optical Interference

Optical interference is the result of superposition of two EM waves. Generally this can

be described using the intensity pattern [13, 16]

I(~r, t) =
∣∣∣∑ ~E(~r, t)

∣∣∣2 (1.11)

The superposition of two general EM waves of the same frequency and polarization can

be written as:

Esuperposition((~r, t)) = E1e
−iφ1(~r) + E2e

−iφ2(~r)

Which is applied to the equation 1.11 to produce the intensity:

I(~r, t) = I1 + I2 + 2
√
I1I2cos[∆φ(~r)] (1.12)

where ∆φ(~r) = |φ1(~r)− φ2(~r)| and I1, I2 = |E1|2, |E2|2 respectivly

From this equation the condition for constructive and destructive interference can be

derived: ∆φ(~r) = 2πn constructive interference

∆φ(~r) = 2π(n+ 1) destructive interference
(1.13)

where n in an integer

Interference of Equal Inclination

In the following section, we will briefly describe the geometry of interference fringes for

two beams of equal Inclination. Let us consider the specific case of two identical beams

that differ only by their propagation on the ẑ axis interfering.
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Plane Wave Interference

Beams that originated from a point source have a phase of the form ∆φ = kz. Inter-

ference of equal inclination for these beams will produce non-localized fringes according

to the conditions presented in the equation 1.13. However, in reality, all sources have a

finite size diameter referred to as an extended source. For an extended source interfer-

ence, assuming the interfering beams are of equal inclination in space, the interference

pattern will present Haidinger fringes of concentric circular form[13].

Assuming the beams divergence is small i.e. θ = θ1 ' θ2, the OPD resulting of beam

divergence at point P is δ = |R1 −R2| = 2∆Dcos(θ). By applying this to equation 1.13

the condition for a bright fringe of nth order at a polar angle θn can be received:

2∆Dcos(θn) = nλ (1.14)

Assuming small-angle approximation produces

cosθn ≈ 1− θ2
n
2

θn ' rn
R0

⇒ cosθn = 1− r2
n

2R2
0

substituting into equation (1.14), produces a circle equation:

nλ = 2∆D

(
1− r2

n

2R2
0

)
whereby the radius of a bright fringe is:

rn = R0

√
nλ

∆D
(1.15)

Gaussian Beams Interference

For a Gaussian beam, the result is similar, however the phase treatment is different.

Let us consider two Gaussian beams that differ only by ∆D, the OPD on the z axis is

projected on a screen at the X-Y plane. The z difference produces a difference in the

beams radius of curvature whereby the complex phase of each beam can be written as

[17]:
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Figure 1.2: An illustration of extended source interference of equal inclination. In figure
1.2.A a simplified scheme of the extended sources S1, S2 divergence and interference. For a
plane wave R0, R1, R2 are the OPD of S1 at point O, at point P and the OPD of S2 from point
P respectively . for a Gaussian beam R1, R2 represent the radius of curvature at z = R0 and
z = R0 + ∆D respectively. In figure 1.2.B a numeric simulation of the interference pattern of
two Gaussian beams, circular fringe pattern is presented as described by equation 1.16 .

φ1 = kr2

2R1
+ kD1

φ2 = kr2

2R2
+ kD2

⇒ ∆φ = k

(
r2

2

∣∣∣∣ 1

R1
− 1

R2

∣∣∣∣+ ∆D

)

When applying the condition of constructive interference ∆φ = 2πn produces:

2π

λ

(
r2

2

∣∣∣∣R2 −R1

R1R2

∣∣∣∣+ ∆D

)
= 2πn

Which is a circle equation, for a constant ∆D the fringe radius received is:

rn =

√
2R1R2(λn+ ∆D)

|R1 −R2|
(1.16)
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1.2. FT-IR Spectrometer

FT-IR spectrometer is a common method of spectroscopy based on the Michelson inter-

ferometer. In this section we will review the mathematical principal behind the FT-IR

spectrometer and the theoretical limitations of this method. The spectrum produced by

the FT-IR spectrometer , S̃(σ), is the result of Fourier transforming an interferogram

I(∆D). The interferogram is produced by changing the length of one of the Michelson

interferometer’s arms and registering the interference signal.

Fourier Transform

A Fourier transform is a linear transform between two inverse domains. For any function

f(x), the Fourier transform can be denoted F (σ), where the product of x and σ is

dimensionless. The Fourier transform and the inverse Fourier transform are defined as:


F (σ) =

∫ ∞
−∞

f(x)e−2πσxdx

f(x) =

∫ ∞
−∞

F (σ)e2πσxdσ
(1.17)

In this thesis, the relevant transformation is between space, usually represented as vari-

able x or z, and k-space usually represented by wavenumber σ = k
2π or k. Fourier

transform also translates between multiplication in space to convolution in k-space.

Consider a function h(x), a multiplication of functions f(x), g(x) under Fourier trans-

formation this translates into:
h(x) = f(x) • g(x)

H(σ) = F (σ) ~G(σ) =

∫ ∞
−∞

F (σ)G(σ′ − σ)dσ
(1.18)

Cross-Correlation

A useful tool for signal comperison is the cross-covariens or cross-corroletion function.

Let us consider two signals f1(x), f2(x), the cross-correlation function of these signals is

[18]

ρ(x) =

∫ ∞
−∞

f1(y)f2(y + x)dy (1.19)

If there is a spatial shift d between the functions- f1(x) = f2(x + d) then the maximal

value of ρ(x) will be at x = d.
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Michelson Interferometer

In a Michelson interferometer a single beam is dividede in two by a beam-splitter. The re-

sulting beams transfer through different arms and re-converge at a second beam-splitter

(commonly the same one) as shown in figure 1.3 [13, 16].

Incoming 
Light

Interference 
Pattern

First arm

Second  arm

Figure 1.3: A Michelson interferometer

Consider a monochromatic light of wavenumber σ0 and intensity 2S(σ0) travelling through

a Michelson interferometer. Since the interference pattern of the Michelson interferom-

eter is an interference of equal inclination it can be described by replacing ∆φ~r with

2πσ0x in equation 1.12 where x is the OPD. The interference pattern I of a changing

OPD x is called the interferogram and can be wriiten as:

Iσ0(x) = S(σ0)[1 + cos(2πσ0x)]

An interference pattern of a broadband source will be the superposition of Iσ0(x)

I0(x) =

∫ ∞
0

S(σ)[1 + cos(2πσx)]dσ



Background 12

Rearranging this expression - subtracting the mean value and present as exponents -

produces:

I(x) = I0(x)− ¯I0(x) =

∫ ∞
0

S(σ)cos(2πσx)dσ

I(x) =

∫ ∞
−∞

S(σ)e−2πσxdσ (1.20)

Equation 1.20 is similar to the Fourier transform in 1.17. Therefore, the spectrum -

S(σ) - can be extracted by inverting the connection [16]:

S(σ) =

∫ ∞
−∞

I(x)e2πσxdx (1.21)

Which is the mathematical justification for using the Michelson interferometer as a

spectrometer.

Resolution control: A Theory of a perfect instrument

The relation between the spectrum and the interferogram in 1.21 is true only for an

infinitely long interferogram, i.e. −∞ ≤ x ≤ ∞. However, in a real interferometer a

finite arbitrary section x0 − L ≤ x ≤ x0 + L of maximal OPD L is sampled [16].

This is equivalent to a rectangular function Π
(
x

2L

)
of length 2L located at x0 multiplied

by an infinitely long interferogram. The resulting spectrum, as implied in equation 1.18

is a convolution of the desired spectrum S(σ) and the Fourier transform of a rectangular

function θ(σ):

Iobserved(x) = I(x) •Π
(
x−x0

2L

)
Sobserved(σ) = S(σ) ~ θ(σ)

(1.22)

θ(σ) can be calculated and analysed:

θ(σ) =

∫ ∞
−∞

Π

(
x− x0

2L
)

)
e2πσxdx =

sin(2Lσ)

σ
= 2Lsinc(2Lσ) (1.23)

The resolution width δσ and its relation to the full width half maximum (FWHM) of a

sinc function is:
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-2l0 -l0 0 l0 2l0
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Spectrum 
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B

Figure 1.4: The interferogram and spectrum of a monochromatic light of wavenumber σ0.
Figure 1.4.A presents the theoretical infinitely long interferogram I(x) = cos(2πσ0) in blue and
the rectangular function Π( x

2l0
) defining the sampled section in red. Figure 1.4.B presents the

theoretical spectrum of a monochromatic light δ(σ − σ0) (a delta function at σ0) in blue and
Fourier transform of the rectangular function Π( x

2l0
) in red. This example highlights the limit

that a finite length sampling impose on the spectral resolution of the Fourier transform.

FWHM = 1.207δσ = 1.207

(
1

2L

)
(1.24)

Equation 1.24 provides the resolution limit of a finite length interferogram which a

theoretical line of infinitesimal width that translates into a sinc that has a finite sized

width δσ.



Background 14

1.3. Herriott Cell

The Herriott cell [19, 20] is a curved mirror resonator with distinct optical path modes

which can be controlled with various degrees of freedom in the system. Herriott cells are

built of two curved mirrors placed opposite each other. In our research we focused on

a cell with a hole in the center of one of the mirrors in which a light beam entered and

exited the cell, see figure ??. The number of repetitions in the cell are mainly controlled

by the following parameters: ζ, f, d. Where ζ the angle of the entering beam relative

to the ẑ axis, f the focal length of the curved mirrors and d the size of the cell - the

distance between the mirrors.

Figure 1.5: An illustration of a Herriott cell. Figure ??.A presents a cross section of the cell
in the x-z plane, illustrating the input (blue) and output (red) beams at angles ζ, ϕ relative to
the ẑ axis and the round trip of the beam inside the cell at an unknown general mode at cell
size d. Figure ??.B present a projection of the beam spot location in the x-y plane laying on an
ellipse. Figure ??.C present an array of n thin lenses equally spaced at distance d from one
another, representing an optically equivalent system to the Herriott cell presented at figure
??.A.

Ellipse Shape Calculation and Mode Selection Rules

A cavity system of two opposing equal curved mirrors is equivalent to a system composed

of equally spaced thin lenses of the same focal length f as shown in figure 1.5.C. The

beam in the section between lens n and (n+ 1) is described by coordinates (xn, yn) and

the corresponding slopes (x′n, y
′
n). The condition for a beam’s exit from the cell can be
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demanded as:

(xN , yN ) ' (x0, y0)e (1.25)

where N is an even integer.

Herriott [19] found that the beam location on the nth lens can be written as:

xn = Asin(nθ + α)

yn = Bsin(nθ + β)
(1.26)

by defining :

cosθ = 1− d

2f
, tanα =

√
4f
d − 1

1 + 2f
x′0
x0

, tanβ =

√
4f
d − 1

1 + 2f
y′0
y0

.

A =

√
4f

4f − d
(
x2

0 + dx0x′0 + fd(x′0)2
)
, B =

√
4f

4f − d
(
y2

0 + dy0y′0 + fd(y′0)2
) (1.27)

In figure 1.5.B this form is translated into an ellipse of semi major and minor axis A,B

and nθ + α = ψxn , nθ + β = ψyn

And it is easy to see that the exiting condition in 1.25 is met when

2σθ = 2πµ (1.28)

where σ = N/2 is the number of round trips in the cell, it can also be easily recognized

by the number of beam spots on the back mirror.

The cell’s modes can be defined by the fraction f
d

ν 8 3 13 4 5 6
f
d 0.9 1 1.2 1.7 2.6 4.4

Table 1.1: Some of Herriott cell modes as found in in the lab using a He-Ne laser
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1.4. The Role of Spectral Dependent Phase

In this section we will establish the physical basis for a discussion on the phase accumu-

lated from the mirrors of the optical system.

Reflected Light from a Surface with Complex Refraction

index

According to Fresnel’s equation [13], the amplitude reflectance r of light reflected at an

interface between two media in normal incidence is

r|| =
Er
Ei

= −n1 − n0

n1 + n0
(1.29)

where Er, Ei are the amplitudes of the reflected and incident EM fields and n0, n1 are

the refractive indices of the media.

Exact calculation of the reflectance of light from metal coated mirrors requires consider-

ation of the complex refractive index of the metal [21]. Substituting the real refraction

index of one of the media to a complex refractive index n1 → n1 − ik1 generates a

complex amplitude reflectance

r =
n2

0 − (n2
1 + k2

1) + 2in0k1

(n1 + n0)2 + k2
1

= r̃eiβ (1.30)

Where r̃ is the real part of the reflectance and the phase change between the reflected

and incident light is β


β = π − ρ

ρ = tan−1( 2n0k1

n2
1+k2

1−n2
0
)

0 ≤ ρ ≤ π
2

(1.31)

Evaluation of Metallic Refraction Index

Evaluation of the complex refractive index can be done using Drude model [22]

n2(ω) = ε(∞)−
ω2
p

ω2 + iωΓd
(1.32)
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where ω is the EM field frequency ,ε(∞) is the high frequency contribution, ωp is the

plasma frequency and Γd is damping factor. These constants can be calculated or ex-

tracted experimentally.

1.5. Pulse Autocorrelation through a

Nonlinear Medium

In this section we will present the physical basis for the calibration of the Herriott cell’s

relative optical path to an adjacent optical system. The calibration is done by using

a nonlinear crystal to trace the correlation signal between two short pulses traversing

through the system.

Second Order Nonlinear Process

Nonlinear Processes occur in media with polarization ~P that have a non-linear relation

to the electromagnetic field ~E [23]. In particular, for second order nonlinear media, the

polarization is proportional to | ~E|2.

~P (t) = χ(1) ~E(t) + χ(2) ~E2(t) (1.33)

where χ(1), χ(2) are the first and second order susceptibility. Since the EM wave is

influenced by the polarization according to the wave equation in medium:

−∇2 ~E2 +
1

c2
~E = −4π

c2

∂2 ~P

∂t2

The intensity of the nonlinear polarization component will determine the EM wave

frequency of the wave coming out of the medium.

Let us consider an EM wave with two distinct frequencies ω1, ω2 propagating in a non

linear medium:

~E(t) = E1e
−iω1t + E2e

−iω2t + C.C

. The second order contribution to the polarization is:

~P (2)(t) = χ(2) ~E2(t) =
∑
n

P (ωn)e−iωnt
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P (ωn) =



P (ωSHG1 = 2ω1) = χ(2)E2
1

P (ωSHG2 = 2ω2) = χ(2)E2
2

P (ωSFG = ω1 + ω2) = χ(2)E1E2

P (ωDFG = ω1 − ω2) = χ(2)E1E
∗
2

P (ωOR = 0) = χ(2)(E1E
∗
1 + E2E

∗
2)

(1.34)

The different second order processes are: Second Harmonic Generation - SHG, Sum

Frequency Generation - SFG, Difference Frequency Generation - DFG and Optical Rec-

tification - OR. The intensities of the processes are determined by phase matching con-

ditions:

∆~k =

2k1,2 SHG

~k1 ± ~k2 SFG/DFG
= 0 (1.35)

And are proportional to the input fields intensities:

INL ∝ I1I2 (1.36)

Figure 1.6: Figure A presents the geometry of second harmonic generation (SHG) and sum
frequency generation (SFG). Figure B present the experimental set up for interferometric
autocorrelation using a SFG crystal
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Interferometric Autocorrelation

Interferometric autocorrelation is a pulse characterization method that uses an interfer-

ometric set-up and a nonlinear crystal to detect the pulse’s phase [24]. On this method,

a pulse beam is put into a Michelson interferometer and set into a nonlinear crystal after

convergence(see figure ). The autocorrelation intensity at time τ is defined by:

IAC(τ) =

∫ ∞
−∞

I(t)I(t− τ)dt (1.37)

Let us consider the case that the pulse is split according to frequency so that the pulse in

one arm of the interferometer is oscillating with frequency ω1: , and the pulse in second

arm is oscillating with frequency ω2:

~E1(t) = ~A1(t)e−iω1(t)

~E2(t− τ) = ~A2(t− τ)e−iω2(t−τ)

Then the EM wave in the crystal is:

~Etotal = ~E1(t) + ~E2(t− τ)

and the autocorrelation intensity is:

IAC(τ) =

∫ ∞
−∞
|[ ~E1(t) + ~E2(t− τ)]2|2dt

Let us assume that the nonlinear crystal support the phase matching conditions for

up-conversation (SHG,SFG), hence, the intensity terms for DFG and OR are eliminated

and the autocorrelation intensity receives the form:

IAC(τ) =

∫ ∞
−∞

SHG1

I2
1 (t) +

SHG2

I2
2 (t− τ) +

SFG

I1(t)I2(t− τ)dt (1.38)

Therefore, the expected spectral measurement should yield 2ω1, 2ω2 at all time delays

and ω1 + ω2 only for time delay τ = 0.



Chapter 2. Analysis of Herriott Cell

The description of the Herriott cell given in section 1.3 is centred around the internal

proprieties of the Herriott cell modes. A full characterization of Herriott cells must

include a description of how a beam of light responds to the Herriott cell as a part of

an optical system. In this chapter we will place the Herriott cell in an optical system

and explore the change in a Gaussian beam’s optical path: optical path difference and

alignment with respect to the rest of the system and the output beam internal properties:

size, amplitude and phase. To do so, we have designed an experimental set-up and a

simulation in the form of figure 2.1 and compared them. The simulation use ray tracing

method (see section 1.1) for evaluating the affect of each optical component in the

system. The Herriott cell modes are calculated using Herriott’s formulas and reduced

to an ABCD matrix. We Have found that the Herriott cell has a non-linear one-to-

one relation between the cell size d and the optical path difference L and it conserve

alignment and beam size for all modes at any wavelength. The amplitude and phase of

the beam however, in not conserved but easily calibrated with regard to the Herriott

cell mode and mode order.

Figure 2.1: A graphic representation of the optical elements taken into account in the
simulation and experiment: lenses (f1, f2, fH), complex reflection from mirrors (silver and
gold), travel through free space (z1..6) and Herriott cell.

.

20
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2.1. Optical Path Properties

The Herriott cell optical path properties are independent of the input beam. The initial

conditions and cell type determine the characterization of the cell in terms of mode

shape, OPD and alignment.

Mode Shape

The shape of the Herriott cell mode is described by Herriott in equation 1.26. In this

research we found that the modes not only differ in the number of iterations in the cell

(σ), but also in size and shape. The shape of the mode is defined by the position of the

beam spots on the mirrors and is distinct to each mode. We can also identify stable and

unstable modes by conservation of the stable mode shape. The beam spots of unstable

modes speared out of the beam spots of stable modes (see figure 2.2 ). We have noticed

that the stable modes tend to maintain longer spans of the cell’s size than the unstable

ones, an observation we will return to further on.

Alignment

A beam alignment with respect to an optical system containing a Herriott cell is defined

by it’s location on the x − y plane and it’s angle ϕ with respect to the optical axis z.

By this definition the output alignment of mode σ is

(x2σ, y2σ), sin(ϕσ) =

√
x2

2σ + y2
2σ

d2σ
(2.1)

where (x2σ, y2σ) are defined by 1.26 and 1.27 and we define dn as

dn =
√
d2 + ∆x2

n + ∆y2
n

∆xn = xn − xn−1 , ∆yn = yn − yn−1

(2.2)

It is easy to see that the trivial output alignment (x2σ, y2σ) = (0, 0), sin(ϕσ) = 0

can only exist if the initial conditions are (x0, y0) = (0, 0), sin(ζ) = 0 for σ = 1 and

completely misses the point of using the Herriott cell. In our research we found that the

alignment of the system can vary between modes and also within modes. We have found

that within the stable modes exists a repartition of the same alignment. This is very

useful as a quantitative way of distinguishing stable and unstable modes. Furthermore

we use the alignment for choosing a specific mode form in a stable mode.
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Figure 2.2: Characterization of the Herriott cell mode shapes from numerical calculation and
experimental observations of the Herriott cell. In A, numerical calculation of mode shapes for
stable modes that differ in the cell size alone. The input position - (x0, y0) - is constant for all
modes and marked with a black starlet, the output position - (x2σ, y2σ) - is marked in
magenta, the blue and red starlets mark the (xn, yn) location of the beam. Ellipses 1-4
correlate to mode numbers σ = 8, 4, 5, 3 at cell sizes d = 64, 116, 155, 198mm.In B, numerical
calculation of mode shapes for the transition from one stable mode (ellipse 1) to another stable
mode (ellipse 4) on the x− y plane of the back mirror. Ellipses 2 and 3 present unstable modes
in between. In C, experimental observations of the same process as in B. figures B and C
illustrate how the unstable modes are spread around the stable mode spots until the mode
transition where the mode spots position completely change.
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Figure 2.3: Properties and effects of the Herriott cell output alignment. In A, results of
numerical calculation of all possible alignments of a Herriott cell, presented in blue, and a
specific alignment, presented in red with a display of the corresponding mode number (σ) and
mode order (µ). The large figure plots the angle ϕ with respect to the Herriott cell size and the
small figure on the top right plots the beam output location on the x− y plane. In B,
experimental observations of a Herriott cell output beam projected on a screen. The difference
between the pictures is fine tuning of a specific mode, as demonstrated in the figure on the
bottom right.

Optical Path Difference

The optical path difference a beam gains in the Herriott cell is dependent of the cell’s

mode and size. Herriott’s equations, 1.26-1.28, help us determine the cell’s modes and

trace the beam location at each iteration at each mode. Summing the distance dn gained

over all iterations can give us the optical path difference.

L(σ, d) =

2σ∑
n=1

dn (2.3)

Assuming that The cell’s size is much grater then the cell’s mirrors i.e ∆xn
d , ∆yn

d << 1

and that the initial conditions support the relations α ' 2β and A ≈ B we can receive

an equation on L:

L(σ, d) = 2dσ +
4σA2

d
sin2

(
θ

2

)
= 2dσ +

σA2

d

(
3 +

d

f
− d2

4f2

)
(2.4)
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Figure 2.4: Typical characterization of a Herriott cell as optical path done inside the cell - L
- with regard to the cell’s size - d. Figure A present all possible optical paths for a set of given
initial conditions : (x0, y0), (x′0, y

′
0, f) (1.3). The red markers represent the theoretical

(equation 2.4) calculation and the blue lines represent the numerical simulation.Herriott cell
modes that meet a specific alignment condition are presented as yellow markers with mode
number (σ) and mode order (µ) captions for the numerical calculations and purple markers for
the experimental observations. Figure B is a zoom on figure A, restricted for optical paths
0 ≤ L ≤ 6000 mm. This figure shows the similarity between the theoretical, numerical and
experimental calculations and measurements. Furthermore, the error bars of the experimental
measurements are visible in this figure due to the axis scale. Thus, show that the alignment
condition chosen for the simulation is close to the alignment condition of the experiment.

Initial conditions alone can not determine the exact output of a Herriott cell. A specific

set of modes can only be determined by exit conditions, in our case we choose to conserve
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optical alignment i.e. exit position on the x − y plane and the angle relative the the z

axis (ϕ). Figure 2.4 shows that our formula, simulation and experimental results for the

Herriott cell are consistent. Therefore, we conclude that the Herriott cell formula and

simulation are good representations for the Herriott cell.

2.2. Output Beam Properties

The Herriott cell output beam properties dependent greatly on the input beam. The

initial conditions and cell type determine the characterization of the cell in terms of

mode shape, OPD and alignment.

Beam Size per Mode

The size of the Herriott cell output beam does not change significantly from the input

beam with negligent variance. In experiment we were unable to distinguish the sizes of

the input and output beams but in simulation we were able to get a quantitative assess-

ment. Calculating The output beam size for each stable mode produce a mean beam

size W out ' Win with standard deviation of ∆W ' 0.5%. For example, the output of

an input beam of size Win = 2 mm has a mean size W out = 1.933 mm with standard

deviation ∆W ' 0.036 mm.

Figure 2.5: Representation of a typical size for a Herriott cell output beam. Calculations for
a general Herriott cell - all output alignments are allowed - are presented as blue. Herriott cell
modes that meet a specific alignment condition are presented as red with detailed mode
number (σ) and mode order (µ). The size of the input beam is represented by the magenta line.
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Beam Amplitude

The amplitude of the output beam is determined by two main factors, the waist to

width relation of the beam and the reflection from the mirrors. A beam with intensity

I = I0 ∝ A2
0 reflected 2σ times from a mirror with reflection r will have intensity

I = r2σI0 and the EM amplitude will be A = rσA0.

A =
ω0

W
rσ (2.5)

A Gaussian beam changes its waist when interacting with a lens or a curved mirror.

Since a beam is going through multiple reflections from curved mirrors in the Herriott

cell we expect the beam waist and amplitude to vary with the Herriott cell modes. In

order to achieve clear understanding of the changes in the beam amplitude with respect

to the Herriott cell modes we divided the research in two. The first part we wanted to

understand the change in the waist/width relation with the modes with perfect reflection

r = 1. The seconde part we wanted to confirm that the change in amplitude coresponds

to equation 2.5 with constant imperfect reflection 0 < r <= 1

Figure 2.6: Typical Herriott cell output beam profile for Herriott cell with perfectly reflective
mirrors (r = 1). Figure A is a three dimensional plot of the output beam ω0

W relation with
respect to the beam wavelength λ and the mode number σ. Blue lines represent all Herriott
cell possible outputs and red lines represent a Herriott cell output of a specific alignment
requirement. Figure B is a two dimensional cross section of figure A for a specific wavelength
λ = 1000nm. Modes of order µ = 1 are presented in gray triangles and modes of order 2 in
black. Figure C is a cross section of figure A for a specific mode σ = 3. Figures B and C are
typical representations of the wavelength and mode cross sections of figure A and demonstrate
the ω0/W dependency with respect to the Herriott cell modes and beam wavelengths.
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Figure 2.7: Typical Herriott cell output beam amplitude for Herriott cell for a specific
wavelength λ = 1000nm. Figure A is a three dimensional plot of the output beam amplitude
with respect to the mirrors r and the mode number σ. Blue lines represent all Herriott cell
possible outputs and red lines represent a Herriott cell output of a specific alignment
requirement. Figure B is a cross section of figure A for a specific mode σ = 3. Figure B is a
typical representation of the amplitude dependency of the mirrors reflection for a given
Herriott cell mode A(σ, r) = ar(σ)b . Figure C present a summary of the fit parameters a, b
with respect to the Herriott cell mode. A linear fit of these parameters confirms the
assumption that a = ω0

W and b = 2σ.

Beam Absolute Phase

A beam reflected from a mirror accumulate a phase. A flat dielectric mirror generate

a phase of π. But a metalic mirror, similar to the mirrors we use for the Herriott cell,

generate different phases for beams of different wavelength. We want to understand how

much phase does a polychromatic Gaussian beam accumulate in the Herriott cell. In the

simulation we used Drude model to evaluate the complex refractive index of the mirrors

and the conclusions of section 1.4 to evaluate the the cumulative phase of a output beam

from a Herriott cell. The Drude model parameters we used where taken from Ref.[25].

The beam does not only accumulate phase from the interaction with the mirrors but

also from the distance it passes through the cell. In order to separate the pure mirror

phase we define the phase as:

χ(σ, λ) = φ(σ, λ)− 2πL(σ, d)

λ
(2.6)

The simulation generated a phase that don’t follow a distinct trend. However, for most

wavelengths, it’s absolute value averages around π :

|χ(σ, λ)| ' π
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. That can be rectified by adding an extra planer mirror to the Herriott cell set-up, thus

setting the phase to

|χ(σ, λ)| ' 2π

.

Figure 2.8: The phases generated in the Herriott cell at mode number σ = 3 with respect to
the wavelength of the input beam. The phase generated from the optical path done in the cell

is represented in blue. For simplicity, the phase presented is the reminder of 2∗πL(σ,d)
λ , it is

significantly smaller then the other phases. The phase generated by the mirror’s reflection
χ(σ, λ) is presented in red. The total phase of EM field out of the Herriott cell φ(σ, λ) is
presented in black .All phases are represented in units of π



Chapter 3. Herriott FTIR

In our research of the Herriott cell we found that it can be implemented as a long varying

delay line for an optical system. An optical system that can greatly benefit from a long

varying delay line is a FTIR spectrometer system. Embedding a Herriott cell inside

the stationary arm of the FTIR and operating it in a multi-mode fashion can push the

theoretical resolution limit of the FTIR while maintaining small footprint. That means

that if we use the convention of naming the modes with index H so that the mode’s

OPD is sorted from low to high1 :

LH+1 > LH > dH (3.1)

The Herriott FTIR total OPD should be:

~Dtotal =

Hmax∑
H=1

(LH + ~D) (3.2)

Where ~D is the OPD of the delay arm and dH is the cell size for mode H.

In this chapter we will try to understand how can a Herriott cell be integrated into a

FTIR set-up and can a combination of steps substitute a continuous scan. Our investiga-

tion includes algorithms for calibration and combination of the Herriott cell modes and

steps and analysis of the effects the Herriott cell have on the spectrum of a FTIR signal

in monochromatic and polychromatic mode. We also present preliminary experimental

results of proof of concept measurements in a Herriott FTIR in monochromatic light for

testing the aforementioned algorithms and spectral analysis.

The proof of concept experiment is a measurement of a monochromatic light with a

Herriott FTIR. The spectral function of a monochromatic light is a delta function.

Therefore, the FWHM of the spectral line we will measure for a monochromatic light will

be the minimal resolution of the instrument. Thus, the monochromatic light is chosen

over polychromatic for the proof-of-concept simulation and experiment. Additionally,

1We don’t use the mode number σ or cell size dσ for naming the Herriott cell modes because they
have a non-linear relation between those parameters and the mode OPD Lσ.

29
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Monochromatic 
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Figure 3.1: An illustration of the Herriott FTIR optical system for the proof of concept
experiment.

testing the step combination algorithm requires a reference step. The reference step is

a FTIR measurement with a single Herriott mode as a stationary arm and a full scan

of the delay arm - ~D. The main experiment is a partial scan of the delay arm ~d for

different Herriott cell modes, so that the sum of all the Herriott FTIR steps is equal to

the reference step.

~D =

Hmax∑
H=1

(LH + ~d) (3.3)

Under experimental constraints, we have chosen three Herriott cell modes for the proof-

of-concept experiment.

3.1. Herriott FTIR Unique Signal Processing

The objective of a FTIR measurement is to obtain spectrum by Fourier transforming

an interferogram. In this section, we will review the main challenges for receiving a

spectrum from a Herriott FTIR and the way we cope with them in our signal processing

algorithm.
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The task of combining the Herriott FTIR step interferograms to a continuous interfero-

gram without compromising its integrity is in the center of the Herriott FTIR concept.

The challenges for combining steps are due to the cumulative effect of Herriott cell modes

on the spectrum and step signal. The integrity of the interferogram is conserved if it

maintains:

1. A continuously changing Amplitude.

However, as we discussed in the previous chapter, the amplitude of the Herriott

cell output beam is dependent of the mode. Thus, each Herriott FTIR step has a

different amplitude around a different mean value.

2. A constant sampling frequency.

However, the starting points of the steps are the OPDs of the Herriott cell modes.

But, the difference between two Herriott cell mode OPDs ∆L = |L2 − L1| might

not be consistent with the sampling frequency of the delay arm δd.

∆L 6= Nδd (3.4)

Where N is an integer.

3. A continuously changing phase.

However, the phase accumulated in the Herriott cell is dependent of the mode.

Therefore, the phase of the total interferogram does not change continuously.

χk = k(L+ φσ) (3.5)

Where χk is the phase accumulated in the Herriott cell for wavenumber k, L is the

OPD of the Herriott cell mode σ and φσ is the mode dependent phase.

4. A consistent spectrum distribution under Fourier transform.

However, the Herriott cell creates distortion in the spectral distribution.

In order to address these challenges we suggest a unique signal processing algorithm for

the Herriott FTIR spectrometer.

The Herriott FT-IR signal processing algorithm is composed of three main sections:

1. Global processing

Preparation of the steps for combination by setting the signal amplitude to one

and mean value to zero and sorting the steps by OPD.
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2. Step combination algorithm

The main idea of the step combination algorithm is to use the overlapping OPD

sections of two adjacent steps as a reference signal for the continuity of the sampling

frequency and phase of the total interferogram. This stage is a cyclical process

that gradually match the sampling and phase of the steps to the smallest OPD

step. At each iteration the two smallest OPD steps are compared, the smallest

OPD is named the first and it’s adjacent the second.

Sampling frequency conservation

The first stage of the correction process is matching the sampling start positions by

interpolating the second step’s signal to a desired OPD that fulfil the requirement

∆L = Nδd. To so so, we find the first data point at the first step OPD -x1- that

correspond to the starting point of the second step OPD -x2:

x1 − x2 = δx ≤ δd (3.6)

Then we shift the second step OPD to the first step OPD and interpolate the

interferogram of the second step -I2(x)- to match the new OPD using Shape-

Preserving Piecewise Cubic Interpolation (PCHIP)[26].

Phase conservation

The second stage of the correction process is finding the phase shift between the

steps and shifting the second step to match the first step. Since the spectrum is

unknown, it is impossible to predict or calibrate the phase shift of the EM filed

for each step. tHowever, the mode dependent phase can be treated as a constant

spatial phase shift for each mode. Cross-correlation or cross-covariance of signals

can find a constant time delay between two signals that overlap in time or space

[27, 28]. Cross-Correlation of two signals f(t), g(t) is defined as:

(f ? g)(τ) =

∫ ∞
−∞

f∗(t)g(t+ τ)dt (3.7)

The Herriott FTIR steps are all identical signals that differ in space by the Herriott

mode OPD L and phase φσ. For the combination of the steps we want to conserve

the mode OPD and eliminate the mode phase. To do so, we choose the Herriott

cell modes that have a small overlapping section between them so that:

LH+1 = LH +D − δ (3.8)

Where D is the length of the delay arm and δ is the length of the overlapping

section. At the overlapping section, the interferograms of both steps Ĩ suppose to
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be identical up to the mode phase difference ∆φσ:

ĨH+1 = ĨHe
−i~k∆φH,H+1 (3.9)

Where an interferogram at the overlapping section is marked as Ĩ.

The phase conservation part of the step combination algorithm finds the relative

phase between two adjacent steps ĨH+1, ĨH by finding the maximal value of the

cross-correlation function ρH,H+1 (equation 1.19). The second step is then shifted

to match the first step by adjusting it’s OPD:

LH+1 → LH+1 + ∆φH,H+1 (3.10)

Finally, the steps are combined to form a new longer step for the next iteration

where it will be the first.

Step

selection

Sampling

correction

Spatial

phase shift

detection

Composi-

tion of a

new step

Figure 3.2: Example for phase conservation between two adjacent steps. The top figure
present the overlapping OPD sections of both steps: the first step in blue and the second in
red. The middle figure show the cross-correlation of the signals according to equation 3.7. The
bottom figure present the first step and the shifted second step at the overlapping OPD section.

3. Spectrum correction

Initial spectrum can be calculated from the combined steps. However, it will be
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distorted by the Herriott cell modes. Spectrum correction is done by multiply-

ing the spectrum with the inverse spectral amplitude of the modes received by

calibration .

S̃(k) = S(k)Ã−1(k) (3.11)

3.2. Herriott Cell Calibration

FTIR spectrometer requires regular scanning resolution. In order to operate a Herriott

cell in a multi-mode fashion within the FTIR, the relative OPD of the Herriott cell

should be consistent with the scanning arm resolution, therefore the Herriott cell must

be calibrated inside the Herriott FTIR set-up. The calibration process of the Herriott

cell is based on short pulse autocorrelation. In this process the input light is a short pulse

Gaussian beam centred around wavelength λ̄. After the beam is split, it passes through

two different wavelength filters. One arm is low pass filtered - only wavelengths shorter

then the center wavelength are passed on, and the second arm is high pass filtered -

only wavelengths longer then the center wavelength are passed on. When the beams are

recombined at the second beam-splitter they go through a BBO crystal cut to SHG of

λ̄ and measured with a spectrometer (see figure 3.3). The spectrum measured at the

spectrometer is expected to contain both fundamental and SHG of both arms for any

OPD, and the SFG of the beams only for OPD ' 0. The alignment of the system plays

a crucial role in the calibration process since the specific mode formation of the Herriott

cell is uniquely related to the output alignment. In order to repetitively control the mode

selection of the cell a camera is positioned at the second recombination of the beams.

Later on, the camera is used to confirm the mode selection and system alignment while

operating the Herriott FTIR mesurments.

The proposed calibration process is able to calibrate modes only for L <= dmax, over-

coming this obstacle requires temporary additional length to the delay arm. Our solution

is to split the calibration sequence to sets of calibration iterations. At each calibration

iteration the delay arm is maximize, then a fixed arm of length D = dmax is added to

the delay arm. Every extension is zeroed by a second pulse-autocorrelation in order to

validate the real d = 0 of the delay arm as presented at the flow chart.

Zero Delay

Stage

Tune

Herriott

Cell by

alignment

find

dSFG for

L < dmax

Add

External

Delay

D = dmax
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camera

Spectrometer

Filter

Filter

Beam splitter

Short Pulse

BBO

Figure 3.3: An illustration of the Herriott cell calibration set-up within the Herriott FTIR
optical system

Mode(σ) Cell Size [mm] OPD [mm]

7 35 127.7281± 0.1708
6 50 221.5103± 0.1871
5 75 342.2696± 0.1794

Table 3.1: Herriott FTIR calibration results

The OPD of a mode was determined by fitting the SFG signal to a Gaussian distribution

in space

I = I0e
− (d−L)2

2∆L2 (3.12)

where the center L is the OPD value of the mode and the FWHM ∆L is the measurement

error.

The process was done several times for each mode and was shown to be repeatable up

to the measurement error. An example of the results for one of the proof of concept

mesurments is a three mode Herriott FTIR as presented in table 3.1, the rest of the

results are in appendix E.
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3.3. Herriott FTIR Simulation Results

The Herriott FTIR simulation is a tool we designed to predict the experimental results

of a Herriott FTIR spectrometer for the purpose of testing the step combination process

and to lay the groundwork for the analysis of the experimental data. Therefore, similar

to the Herriott cell simulation, the Herriott FTIR simulation take into account all of the

optical system parameters.

Simulation Validity Test

The validity of the simulation must be tested before it can be used for any conclusions

and predictions. The simulation was tested for:

1. Maintenance of the theoretical resolution limit for FTIR without a Herriott cell

for a monochromatic light.

Figure 3.4: Summery of FTIR without Herriott simulation for a Gaussian beam with
wavelength of λ = 1000nm for maximal OPD of 1-20 mm. Figure B present the spectrum
around the central frequency k0 = 1000cm−1. Figure A present the FWHM of the spectrum for
each maximal OPD scan of the FTIR.
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2. Re-contraction of a polychromatic light with prefect mirrors (r = 1).

Figure 3.5: Summery of the Re-contraction test of the FTIR simuletion for poly chromatic
light. Figure A present reconstruction of polychromatic light with constant amplitude
S(k) = 1. Polychromatic light with wavelength dependent amplitude S(k) is presented in figure
B (wide frequency rang: 700− 1200nm) and figure C (narrow frequency rang: 990− 1010nm ).
The difference between the input and output amplitudes is presented as variable
Error = Sin(k)− S(k) in figure D.

Figures 3.4 and 3.5 demonstrate that the FTIR simulation is a good representation of

a FTIR optical system, by showing that it reasonably reconstruct the spectrum of an

input polychromatic light and is consistent with the theoretical resolution limit.
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Herriott Cell effects on a FTIR spectrum

In the previous chapter, we investigated the effects of a Herriott cell on a Gaussian beam.

The characterization of Herriott cell effects on a FTIR spectrum is done gradually with

rising complexity. The spectrum is examined after global processing alone, in order to

highlight the contribution of the Herriott cell modes to the spectrum. The Herriott cell

is inserted to the FTIR simulation in three stages:

1. perfect reflection - r = 1

2. real, wavelength dependent, reflection r = r(λ) ∈ R.

3. complex, wavelength dependent, reflection r = r(λ) ∈ C.

A

C

B

Figure 3.6: FTIR simulation with a Herriott cell at the stationary arm. Figures A,B and C
compare the raw FTIR spectrum of three 50 mm scan steps for monochromatic light with
wavelength λ = 1000nm. Figure A is a demonstration of FTIR with perfect mirrors r = 1 .
Figure B is a demonstration of FTIR with dielectric mirrors r = r(λ) ∈ R, where the values for
r(λ) are the real part of a gold mirror reflection. Figure C is a demonstration of FTIR with
gold mirrors r = r(λ) ∈ C, where the values for r(λ) are calculated form 1.4.

Figure 3.6 shows the main difference between a FTIR spectrometer and a Herriott FTIR

spectrometer. Multiple reflection of the Herriott cell mirrors change the amplitude of

the step spectrum, this might cause distortion in the spectrum at the step combination

stage.
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Step Combination Test

The step combination process was tested for a proof of concept Herriott FTIR set-up,

three steps where chosen: σ = 6, 5, 4 for a 180mm scan length. With accordance to the

experimental set-up, all flat mirrors are coated in silver and the Herriott cell mirrors

are coated in gold. After subtraction of the OPD overlap sections between the steps,

the maximal OPD of the Herriott FTIR is 480 mm. Therefore, a reference FTIR of the

same maximal OPD was simulated for comparison in order to test the effects of the step

combination process on the Herriott FTIR spectrum. Figure 3.7 shows the similarity of

the Herriott FTIR resolution-MOPD relation to the standard FTIR resolution-MOPD

relation for monochromatic light. Therefore, we conclude that the step combination

process dose not add significant diversions to the effective interferogram and is equal to

a continuous interferogram.

Figure 3.7: Summery of the proof-of-concept simulation for monochromatic light.
Comparison of the FTIR spectrum for different maximal OPDs is presented at the top figures.
The Herriott FTIR spectrum (figure C) is presented by number of steps combinations: a single
step in blue, two steps in red and all three steps in green. The reference FTIR (figure B) is cut
to match the Herriott FTIR step combination’s maximal OPD. The FWHM relation to the
maximal OPD of the simulations is presented at figure A: The reference is plotted in blue and
the Herriott FTIR in magenta.
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Amplitude Calibration

The spectrum correction process demesnes amplitude calibration for the combined steps

spectrum. Polychromatic light with a constant amplitude was inserted to the proof of

concept simulation in order to understand the the effects the Herriott cell combined

modes have on the FTIR spectrum.The amplitude calibration for the simulated wave-

lengths is the result of comparing the spectral amplitude distribution of the Herriott

FTIR spectrum to the reference spectrum. An example of the simulation is presented

in figure 3.8 for λ = 800, 900, 1000nm.

Figure 3.8: Spectral amplitude comparison of spectral lines
(k = 1.25 · 104, 1.11 · 104, 1 · 104cm−1) corresponding to λ = 800, 900, 1000nm for Herriott FTIR
simulation with different step combinations to input amplitude A(k) = 1. The spectral lines for
each step combination are presented at figure A and the normalized peaks per step are
presented at figure B. In these figures, one step spectrum is in green, two steps in red and three
steps in blue.
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3.4. Herriott FTIR Preliminary Experimental

Results

We have conducted two experiments in a Herriott FT-IR proof-of-concept set-up in order

to confirm the simulation results. A monochromatic light was chosen for the experiment

because its spectrum is a delta function. Therefore, the FWHM of the FT-IR spectrum

should be the resolution limit of the instrument.

Figure 3.9: Pictures of the experimental set-ups, the set-up for (A) the HeNe experiment and
(B) the 780 nm experiment
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HeNe

The first experiment was a preliminary test for the proof-of-concept simulation. It was

conducted with a HeNe laser with a λ = 632.9nm central spectral line with width of

approximately ∆λ = 1nm. The Herriott cell modes chosen for the experiment are

σ = 7, 5, 4 with scans of 120mm for step. The results are similar to the simulation

results but the sp The Herriott FT-IR spectrum was not clean enough to deduce a

clear resolution limit for the instrument, mostly due to insufficient measurements. A

rough estimation of the resolution limit was made using the envelope of the spectral

line and fitting it into a Gaussian function. The FWHM of the Gaussian fits show some

similarity to the simulation results. These results also indicated that the spectral width

of the HeNe laser is not narrow enough to be considered as a delta function comparing

to the resolution limit.

Figure 3.10: Summary of Herriott FTIR proof-of-concept experiment with HeNe laser. The
Herriott FT-IR step combination results are presented on the top right figure. The spectrum is
presented in 1,2 and 3 steps combination and a reference step. The Gaussian fits for the
spectrum envelops are also presented in the figure. The large figure plot the FWHM relation to
the maximal OPD of the steps and the reference.
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780 nm

The second experiment was conducted with a 780 nm laser source with spectral width

of δλ ' 10−9nm and a mechanically upgraded se-up. The Herriott cell modes chosen

for the experiment are σ = 7, 6, 5 (table 3.1) with scans of 180mm for step. Although

enough measurements were conducted in order to deduce clear spectrum, the resolution

limit of the instrument can not be observed due to an upper bound on the spectral

resolution. We assume that the restriction on the resolution is due to mechanical noise

and more experiments are to be conducted in the future. Figure 3.11.B demonstrates the

upper bound on the Herriott FTIR spectral resolution in this experiment. Presenting

the normalized spectrum of all of the step combinations and the reference measurement,

shows that the hight and width of all of the spectral lines are identical.Therefore, these

results do not comply to the FTIR size-resolution relation.

Figure 3.11: Summary of Herriott FTIR proof-of-concept experiment with HeNe laser. The
Herriott FT-IR step combination results are presented on the top right figure. The spectrum is
presented in 1,2 and 3 steps combination and a reference step. The Gaussian fits for the
spectrum envelops are also presented in the figure.



Summery and further outlook

This work presented a characterization of the Herriott cell and it’s implementation as a

part of FT-IR spectrometer.

The main conclusion from the Herriott cell characterization research, is that the Herriott

cell can be used in a multi-mode fashion within an optical system. This conclusion is

derived from four main characteristics we found for the Herriott cell. First, the Herriott

cell conserve a Gaussian beam’s size. Second, a set of Herriott cell modes can always

be chosen to conserve the alignment of an optical system. Third, the unconserved beam

properties - phase and amplitude- can be calibrated to fit an optical system connected

to a Herriott cell. Last, the OPD done by the Herriott cell can be reduced to an simple

equation that depend on the mode number, cell size and initial conditions alone. This

equation was confirmed by a numerical simulation and experiment. Additionally, We

designed a calibration algorithm that successfully finds the OPD done by the Herriott

cell with relation to an external optical system. Our results on the Herriott cell complete

Herriott’s work [19, 20] to full characterization of the resonator: The cell by itself and

the interaction of a Herriott cell with an external optical system.

The numerical simulation of the Herriott FT-IR predicts that a well calibrated Herriott

cell can be used as an extension for a FT-IR system. The simulation for monochromatic

proof-of-concept Herriott FT-IR successfully reconstructs spectrum and show that our

step combination process does not significantly alter the theoretical size-resolution re-

lation of a Fourier transform based spectroscopy. Our polychromatic calibration simu-

lation emphasizes the need for amplitude calibration for polychromatic Herriott FT-IR

spectrometer.

Our preliminary experimental results of a monochromatic proof-of-concept FT-IR are

inconclusive. The interferograms and reconstructed spectrum of the HeNe experiment

have a low signal to noise ratio and cannot be used for an significant conclusion. However,

rough analysis of the experiment implies that the theoretical size-resolution relation of

a FT-IR spectrometer is conserved. Additionally, the reconstructed spectrum have a

spectral width of ≈ 10−1nm. Therefore, the spectral width of the HeNe (≈ 1nm) is not

44
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narrow enough to fully observe the resolution limit of the Herriott FTIR. The second

experiment was conducted with a laser source that has a much narrower spectral width.

The 780nm laser experiment did not confirm the result of the simulation and HeNe

experiment. The spectral width of the reconstructed spectrum was ≈ 5nm, significantly

wider then the spectral width of the previous experiment and the source (≈ 10−9nm).

Therefore, we conclude that the results are still not conclusive. We suspect that the high

signal to noise ratio (SNR) that we experienced was due to mechanical noise setting an

upper limit on the instrument’s resolution and distorted the results.

In the future, we plan to recreate the experiment with technical improvements, in order

to achieve clear results. Additionally we want to test the calibration for polychromatic

Herriott FTIR i.e gain amplitude calibration for white light. Furthermore the conclusions

of the Herriott FT-IR can open the possibility for connecting other multi-pass cells with

FT-IR system on the condition they, too, conserve beam size and alignment. Currently,

we examine the White cell as an alternative to the Herriott cell as a multi-pass cell

in a FT-IR reference arm. To do so, we have designed a new comparison and proof-of-

concept experiment for the Herriott/White FT-IR’s with a polychromatic source. In this

experiment, we will replace the reference arm of a FT-IR’ base set-up with three OPD’s

produced by Herriott cell modes and a White cell modes. The control experiment will

include a repetition of the experiment with three standard references and a repetition

of this experiment with a monochromatic source.



Appendix A. Interferometric Autocorrelation

Intensity for SFG

This appendix present the full derivation of the autocorrelation Intensity for an interfer-

ometric autocorrelation of a pulse split into two frequency components and re-converge

collinearity at a nonlinear crystal with up-convertion phase matching conditions as pre-

sented at section 1.5. The pulses are oscillating at two different frequencies : ω1, ω2 and

are delayed at τ in time.

~E1(t) = ~A1(t)e−iω1t + C.C

~E2(t− τ) = ~A2(t− τ)e−iω2(t−τ) + C.C
(A.1)

The EM wave in the crystal is:

~Etotal = ~E1(t) + ~E2(t− τ) + C.C (A.2)

and the autocorrelation intensity is:

IAC(τ) =

∫ ∞
−∞
|[ ~E1(t) + ~E2(t− τ)]2|2dt (A.3)

Let us simplify the terms in the integral of the autocorrelation intensity:

|[ ~E1(t) + ~E2(t− τ)]2|2 =[E2
1 + E2

2 + 2E1E2][E∗21 + E∗22 + 2E∗1E
∗
2 ]

= |E2
1 |2 + |E2

2 |2 + 4|E1|2|E2|2

+ E2
1E
∗2
2 + 2E2

1E
∗
1E
∗
2

+ E2
2E
∗2
1 + 2E2

2E
∗
1E
∗
2

+ 2E1E2E
∗2
1 + 2E1E2E

∗2
2

(A.4)

Inserting A.1 into A.4 reviles the frequency of each term:
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|E2
1 |2 ∼ I2(2ω2

1) (A.5)

|E2
2 |2 ∼ I2(2ω2

2) (A.6)

|E1|2|E2|2 ∼ I1I2 ∼ I(ω1 + ω2) (A.7)

E2
1E
∗2
2 = (E2

2E
∗2
1 )∗ = A2

1e
−i2ω1tA∗22 (t)ei2ω2t ∼ I(2(ω1 − ω2)) (A.8)

E2
1E
∗
1E
∗
2 = (E1E2E

∗2
1 )∗ = A2

1A1A
∗
2e
−i(ω1−ω2)t ∼ I(2ω1)I(ω1 − ω2) (A.9)

E2
2E
∗
1E
∗
2 = (E1E2E

∗2
2 )∗ = A2

2A
∗
1A2e

i(ω1−ω2)t ∼ I(2ω2)I(ω1 − ω2) (A.10)

Since the phase matching conditions do not support DFG, terms A.8-A.10 are eliminated,

and the autocorrelation intensity at τ = 0 is:

IAC =

∫ ∞
−∞

I2
1 (t) + I2

2 (t) + I1(t)I2(t)dt (A.11)

Adding time delay τ between the pulses produce equation 1.38

IAC(τ) =

∫ ∞
−∞

SHG1

I2
1 (t) +

SHG2

I2
2 (t− τ) +

SFG

I1(t)I2(t− τ)dt



Herriott Cell Mode Shape

In this appendix we present some pictures of the Herriott cell’s modes from our ex-

periment with a HeNe laser. As discussed in section 2.1, the Herriott cell modes are

controlled by the size of the cell and differ in the number of transverses in the cell and

can be counted on the face of the back mirror. Figure A.1 present a Herriott cell in mode

number σ = 3 with a description of the Herriott cell components. Figures A.2- A.4 show

other Herriott cell modes from the same set-up at different cell sizes. Figures A.5-A.6

show the mode shapes on the back mirror face at different modes with no particular

order.

Figure A.1

48
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Figure A.2

Figure A.3

Figure A.4
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Figure A.5

Figure A.6



Appendix B. Herriott cell Formula

Herriott provided the ellipses exact shape A,B and location (xn, yn) at each iteration

n for mode σ at cell size d for a symmetric Herriott cell with curved mirrors of focal

length f . In this work we are also interested in the total optical path preformed in the

cell L or OPD, i.e L as a function of σ, d and initial conditions f, x0, x
′
0.

The optical path performed in the cell at each iteration is a three dimensional norm:

dn =
√
d2 + ∆x2

n + ∆y2
n (B.1)∆xn = xn − xn−1

∆yn = yn − yn−1

(B.2)

Where n = 0 case is the start condition for the cell.

The total optical path performed in the cell at a specific mode is

Lσ =
2σ∑
n=1

dn (B.3)

Simplifying this equation require some assumptions, the relevant assumptions for the

type of Herriott cell we will use for the Herriott FTIR are:

1. The cell’s size is much grater then the cell’s mirrors i.e ∆xn
d , ∆yn

d << 1

2. The initial conditions support the relation α ' 2β

3. The initial conditions support the relation A ≈ B
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Using assumption 1 and taking leading order of Taylor series we can simplify B.1:

dn =
√
d2 + ∆x2

n + ∆y2
n

= d

√
1 +

∆x2
n + ∆y2

n

d2

' d
(

1 +
1

2

∆x2
n + ∆y2

n

d2

) (B.4)

Simplify the term ∆x2
n + ∆y2

n by using assumptions 2:

∆x2
n = [Asin(nθ + α)−Asin((n− 1)θ + α)]2

∆y2
n = [Bsin(nθ + 1

2α)−Bsin((n− 1)θ + 1
2α)]2

(B.5)

Using the identity: sinθ − sinϕ = 2cos
(
θ+ϕ

2

)
sin
(
θ−ϕ

2

)
We can simplify B.5:

∆x2
n = [(nθ + α)−Asin ((n− 1)θ + α)]2

= 4A2sin2

(
θ(n− 1)− θn

2

)
cos2

(
α+

θ(n− 1) + θn

2

)
= 4A2sin2

(
θ

2

)
cos2

(
α+ θn− θ

2

)
∆y2

n = 4B2sin2

(
θ

2

)
cos2

(
1

2
α+ θn− θ

2

)
(B.6)

Summing over all iterations at mode σ

2σ∑
n=1

cos2

(
α+ θn− θ

2

)
= σ +

1

4sinθ

[
sin(2(α− θ

2
) + 4σθ + θ)− sin(2(α− θ

2
) + θ)

]
= σ +

1

4sinθ
[sin(2α+ 4σθ)− sin(2α)]

but the condition for mode existence is 2σθ = 2πµ so

[sin(2α+ 4σθ)− sin(2α)] = [sin(2α)− sin(2α)] = 0

and
2σ∑
n=1

cos2

(
α+ θn− θ

2

)
=

2σ∑
n=1

cos2

(
1

2
α+ θn− θ

2

)
= σ (B.7)
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Returning to B.3 with B.4,B.6,B.7 we get

Lσ =
2σ∑
n=1

dn =
2σ∑
n=1

d

(
1 +

1

2

∆x2
n + ∆y2

n

d2

)
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θ

2

)
σ

]
= 2dσ +
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d
sin2

(
θ

2

)

Assuming A ≈ B, we get

Lσ = 2dσ +
4σA2

d
sin2

(
θ

2

)
(B.8)

We can also use sin(cos−1(x)) =
√

1− x2 and cos(θ) = 1− d
2f to receive:

L(σ, d) = 2dσ +
σA2

d

(
3 +

d

f
− d2

4f2

)
(B.9)



Appendix C. Herritt Cell Output Beam

Amplitude

Section ?? (Herriott cell: beam amplitude) present the conclusions of our simulation

research on the Herriott cell output beam amplitude and profile. Here we present the

supporting background for those conclusions:

Waist to width ratio

The amplitude of a Gaussian beam is dependent of the ratio between the waist of the

beam -ω0 - and the width of the beam -W . Since the waist of the Gaussian beam is

dependent of the wavelength, a simulation of the Herriott cell was conducted for different

wavelengths λ = [500, 550..1000]nm and the waist to width ratio was compared between

different wavelengths at different Herriott cell modes (figure 2.6). In order to understand

the amplitude dependency of the output beam with the wavelength and mode we fitted

the amplitude (or waist to width ration of the beam) for:

1. the mode for every beam wavelength

Figures (C.2-C.6) present the amplitude cross section for mode at multiple wave-

lengths. Figure C.2 on the right show all mode cross sections of ω0
W for different

wavelengths. The rest of the figures (C.2 (left)-C.5) present ω0
W fits for wavelength,

ω0
W = aλ2 + bλ+ c. Description of the fitted equation are presented on the fits and

a summery of the fit parameters a and b are presented on figure C.6.

2. the wavelength of the beam for every mode

Figures (C.7-C.13) present the amplitude cross section for wavelength at multiple

modes. Figure C.7 on the right show all mode cross sections of ω0
W for different

modes. The rest of the figures (C.7 (left)-C.12) present ω0
W fits for modes of order

1, ω0
W = aλ+ b. Description of the fitted equation are presented on the fits and a

summery of the fit parameters a and b are presented on figure C.13.

Mirrors Reflection

The amplitude of the Herriott cell output beam is effected by the reflection of the
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output mirrors. Theoretically, for any mode σ for a Herriott cell with mirrors that have

reflection r the amplitude is A = A0r
2σ where A0 is the waist to width relation from

the previous section. The following figures present a simulation analysis of an output

beam with wavelength λ = 1000 nm from a Herriott cell with a specific set of initial

conditions. Figures (C.15-C.18) present the amplitude cross section for wavelength at

multiple modes. Figures (C.7-C.10 (left)) present fits of A = arb for different modes.

Description of the fitted equation are presented on the fits and a summery of the fit

parameters a and b are presented on figure C.10. A linear fit of parameter b with

respect to the Herriott cell modes support the connection in equation 2.5.

Figure C.1: Amplitude of a Herriott cell output beam with respect to the Herriott cell size
for Gaussian beams of different wavelengths. The lines represent all possible outputs for a
specific set of initial conditions and the dots represent outputs that comply to a specific
alignment condition.
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Figure C.2

Figure C.3
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Figure C.4

Figure C.5



Herritt Cell Output Beam Amplitude 58

Figure C.6

Figure C.7
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Figure C.8

Figure C.9
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Figure C.10

Figure C.11
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Figure C.12

Figure C.13
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Figure C.14: Amplitude of a Herriott cell output beam with respect to the Herriott cell size
for Gaussian beam of wavelength λ = 1000 nm for different mirror reflection. The lines
represent all possible outputs for a specific set of initial conditions and the dots represent
outputs that comply to a specific alignment condition.

Figure C.15
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Figure C.16

Figure C.17
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Figure C.18



Herriott Cell Mirror Generated Phase

In this appendix we present a comparison of the different phases generated by the Her-

riott cell for different mode numbers at different input wavelengths. We have studied the

phases generated by the mirror’s complex reflection -χ, the optical path in the Herriott

cell 2∗πL(σ,d)
λ and the total phase of the output EM field E = E0e

−iφ, φ. All phases are

in units of π and the optical path phase is calculated only as the reminder of the fraction
2∗πL(σ,d)

λ .

figure C.19 present an example for the optical path phase generated for all input wave-

lengths at mode number σ = 7. Due to it’s significantly smaller scale then the other

phases, the optical path phase appears to be a flat line. This figure demonstrate that it

is not so. figures C.20-C.22, present the comparison of all the phases mentioned above,

the optical path phase is in blue, the mirror’s reflection phase is in red and the total

phase is in black.

Figure C.19
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Figure C.20

Figure C.21
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Figure C.22



Appendix D. Supplementary Material for

the Herriott FT-IR Simulation

In this appendix we present the supplementary material for the Herriott FT-IR simula-

tion results. The results presented are for a Herriott FT-IR simulation of a polychromatic

light composed of three spectral lines : λ = 800, 900, 1000nm sampled with a 180mm

delay line at three Herriott cell modes. Figures D.1-D.3 present the interferograms taken

at each step. The overlapping interferograms, cross correlation signal and corrected in-

terferograms between steps one-two and two-three are showen in figures D.4,D.4. The

combined interferogram of the steps and the corrosponding references step are presented

in figures D.6 and D.7.

Figure D.1
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Figure D.2

Figure D.3

Figure D.4
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Figure D.5

Figure D.6

Figure D.7



Appendix E. Supplementary Material for

Herriott cell calibration

In this appendix we present the supplementary material for the for the Herriott cell

OPD calibration. The following figures show the calibration process for the mode set in

section 3.2. The calibration was made with a short pulse of about 100fs temporal width

around 780nm wavelength and the arm were spectrally separated with 13nm. The filters

separating the arms spectrally were a long-pass above 785nm for the delay arm and a

short-pass below 775nm for the Herriott arm.

Figures E.1- E.3 show the fundamental and SFG signals for OPD at mode numbers

σ = 5, 6, 7. The fundamental spectrum in the figures is shown as two spectral lines with

constant amplitude for all OPS’s around λ = 780nm. The nolinear responses are shown

as two low spectral lines with constant amplitude for all OPS’s around λ = 390nm for the

SHG and a high spectral pick around a specific OPD for the SFG. The SFG spectral line

has a significant width on the spectral axis and the temporal (OPD) axis. Therefore

there is a need to fit the fundamental spectrum with respect to the spectral axis in

order to find the exact wavelength for the SFG. The Gaussian fits for the fundamental

spectrum are presanted at figures E.4-E.6:SDelay(λ) = aDe
−
(
λ−µD
cD

)2

SHerriott(λ) = aHe
−
(
λ−µH
cH

)2 (E.1)

The red trend line mark the Gaussian fit for the delay arm fundamental spectrum and

the green trend line is for the Herriott arm. A second spectral line around 767nm is

noticeable, but it does not support phase matching conditions for the SFG. Therefore

it is not part of the calibration. Finally, the spectral intensity of the SFG is fitted for a

Gaussian with respect to the OPD:

ISFG(OPD) = ae−(OPD−µc )
2

(E.2)
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The wavelength for the OPD is chosen according to

λSFG =
µD + µH

4
(E.3)

The SFG fits are presented in figures E.7-E.9.

Figure E.1

Figure E.2
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Figure E.3

Figure E.4
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Figure E.5

Figure E.6
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Figure E.7

Figure E.8
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Figure E.9



Appendix F. HeNe Experiment

Supplementary Material

In this appendix we present the supplementary material for the Herriott FT-IR proof-of-

concept experiment with a HeNe laser.

Figure F.1

Figure F.1 present the inter-

ference pattern of the Her-

riott FT-IR, taken from a cam-

era,positioned after the second

beam splitter (see figure 3.1).

Figures F.2-F.4 present the in-

terferograms taken at each step.

The overlapping interferograms,

cross correlation signal and cor-

rected interferograms between

steps one-two and two-three are

showen in figures F.5,F.5. The

combined interferogram of the

steps and the corrosponding ref-

erences step are presented in figures F.7 and F.8. The Fourier transforms of the steps

combinations and reference are shown with Gaussian fits for their envelops in figures F.9

- one step and two step combination, and F.10 - three steps combination and reference.

77



HeNe Experiment Supplementary Material 78

Figure F.2

Figure F.3

Figure F.4
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Figure F.5

Figure F.6

Figure F.7
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Figure F.8

Figure F.9

Figure F.10



Appendix G. Experiment Supplementary

Material for 780 nm

In this appendix we present the supplementary material for the Herriott FT-IR proof-

of-concept experiment with a 780 nm laser.

Figures G.1-G.3 present the interferograms taken at each step. The overlapping inter-

ferograms, cross correlation signal and corrected interferograms between steps one-two

and two-three are showen in figures G.4,G.4. The combined interferogram of the steps

and the corrosponding references step are presented in figures G.6 and G.7. The Fourier

transforms of the steps combinations and reference are shown in figures G.8-G.9.

Figure G.1
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Figure G.2

Figure G.3

Figure G.4
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Figure G.5

Figure G.6

Figure G.7
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Figure G.8

Figure G.9
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