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Abstract

With the advent of novel techniques, which push the limits of nano-scaled fabrication
of materials, the characterization and understanding of their fundamental physical
properties is of paramount importance. Specifically, the ability to control how these
materials are manipulated and interact with light is key, as they may be the next
generation detectors and modulators for electronic and optical information. In this
research, I explored light-matter interactions on two fronts, the first being through
near-field scanning optical microscopy and the second through developing a new
scheme of composite pulses for quantum coherent control.

Scanning near-field optical microscopy (SNOM) has revolutionized the study of
fundamental physics, as it is one of the very few optical non-invasive imaging
techniques with subwavelength resolution. This has been particularly valuable to
gain an intimate understanding of the processes in platforms, such as 2D materials,
plasmonics and waveguide systems, that allow to tailor light-matter interactions at
the nanoscale. The spatial resolution of SNOM, based on the atomic force microscope
(AFM), is limited mainly by the apex of the probing tip ("15nm), and by the poor
discrimination of near-field optical signals from a much stronger far-field background.
Thus, the achievement of high sensitivity in such measurements remains a daunting
task. In this work, I theoretically derived and experimentally applied a feasible
multifrequency SNOM method that results in enhanced sensitivity for the detection
of weak near-field signals of dielectric contrast. I achieved two-fold enhanced
sensitivity in the measurement of near field signals as a function of tip-sample
distance, gaining higher sensitivity to such optical measurements.

The second front of my research focused on advancing methods of quantum coherent
control schemes for quantum information processing (QIP). In particular, my aim was
to design high-fidelity and robust control protocols for quantum integrated photonics
platforms. I studied the dynamics of quantum systems interacting with an external
electric field and derived techniques for accurate state transfer within the threshold
for QIP. I generalized popular composite pulses schemes (CPs) to N-level systems
with SU(2) symmetry, and developed a novel family of CPs, harnessing for the first
time the detuning as a control parameter. Detuning-modulated CPs (DMCPs) allow
for remarkable tolerance against pulse area errors, reaching high fidelities of under
104, within the lifetime of the system. They are perfectly suited for implementation
in integrated photonic circuits to overcome inaccuracies in fabrication and provide a
path for true high-fidelity QIP schemes. Moreover, DMCPs provide a foundation for
short error-correction techniques suitable to control other qubit architectures.
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Introduction

A scientist in a laboratory is not merely a
technician. She is also a child placed before
natural phenomena which impress her like a
fairy tale!

— Marie Curie
(Nobel Prize Physicist)

The field of light matter interactions is a playground in which photons play a
central role in both exciting and probing physical systems. The discoveries and
breakthroughs in the field act as a feedback mechanism, pushing current limits of
resolution, bandwidth, fabrication, therefore enabling even more discoveries and
breakthroughs. Naturally, the field has exploded in the recent two decades. New
cutting-edge fields, such as ultra-fast pulsed lasers, nano-scaled meta-materials, Sili-
con nanophotonics and sub-wavelength resolution imaging, have emerged, breaking
barriers, reshaping experimental paradigms and leading current technologies. On an
even more recent timescale, during the past five years, quantum technologies have
steadily begun to leap over the boundary of a theoretical prospect and have become
an achievable near-term goal.

During my PhD, I performed research on two fronts of light-matter interactions: near-
field scanning optical microscopy (SNOM) with measurements of photo-induced
phenomena in highly correlated electron systems, and composite pulses for quantum
coherent control and quantum information processing (QIP). While there is no
directly apparent link between these two research fronts, they cover two aspects
of control of nanophotonic devices. My studies resulted in three first-authored
published manuscripts, one second-authored publication and one first-authored
publication that is currently in review.

In order to prepare the grounds for a broad study of dynamics in the near-field, I
theoretically derived and experimentally applied a multifrequency near-field opti-
cal imaging method that results in enhanced sensitivity for the detection of weak
near-field signals. In Chapter 2.1 of this work, I introduce scattering-type scanning
near field optical microscopy (sSSNOM), a non-invasive imaging technique, based on
the atomic force microscope (AFM). Its spatial resolution is limited mainly by the
apex of the probing tip (approximately 15nm), and by the inadequate discrimination
of near-field optical signals from a much stronger far-field background. Thus, the
achievement of high sensitivity in such measurements is an ongoing challenge. In
publication 1, presented in Chapter 3.1, I theoretically derived and experimentally
showed that this scheme allows for a two-fold enhanced sensitivity in the mea-
surement of an optical near field signal as a function of tip-sample distance. Our
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measurements of 500nm gold nanorods, with resolved optical features of the order
of 7nm, imply that this enhanced sensitivity leads to an improved resolution in the
x-y plane.

This technique, along with our lab’s unique capability of 20fs temporal resolution,
made it possible to probe structural and electro-optical inhomogeneities at the
nanometer scale. Specifically, I chose to probe the underlying mechanisms of the
photoinduced persistent conductivity amplification of the complex oxide interface,
LaAlO3/SrTi0Os. In currently unpublished results of this ongoing research, de-
scribed in Chapter 4.1, I designed an experiment that clearly shows that the above
phenomenon is well localized in LaAlO3/SrTiOs. The persistent photoconductivity
at room temperature is a result of trapped electronic states between the layers of the
two materials that do not transport via the 2DEG.

This knowledge, along with derived theories of quantum control, will enable the
efficient coupling of such systems into photonic circuits, which are considered a
candidate for solving current limitations of electronic devices. I detail the evolution
of my research on composite pulses for quantum information processing in Chapter
2.2. In publication 2, provided in Chapter 3.2, which was featured on the cover of the
Journal of Chemical Physics, I derived a general theory of composite pulses for higher
order irreducible representation of SU(2) dynamics of N-level systems. Composite
pulses are a series of pulses with specifically chosen phases, that compensate for the
imperfections of a conventional single pulse. Thus their performance in steering a
two-level system to a final state is feasible, accurate and robust. However, studies
of such composite sequences impinged on multi-level systems have been lacking.
The derivations of this work allow to tailor the dynamics of physical multi-level
systems, without imposing the approximation to a two-state solution. The schemes
result in high fidelity population transfer from any state of a multi-level system
to its palindromic counterpart, which is robust to inaccuracies in both system and
excitation parameters.

Furthermore, publication 3, featured in Chapter 3.3, details the derivation of a novel
quantum control mechanism that can be implemented in any qubit architecture.
Specifically, we developed a composite control scheme that takes into account sys-
tems with real coupling parameters, as previous schemes could only be implemented
on systems with complex coupling parameters. Such systems include coupled waveg-
uides, that are considered a strong contender for quantum information processing.
I was awarded two merit-based scholarships of excellent research in 2019 for this
work. In Chapter 4.2, I extend this scheme to create high-fidelity universal quantum
gates. In both works, I translated the theoretical schemes to executable designs of
integrated photonic waveguide couplers, which are patent pending. An ongoing
collaboration between our group and Bar Ilan University will result in experimental
demonstrations of the robustness of this technique.

The theoretical derivations of publication 3 and Chapter 4.2 provided a cornerstone
for further collaborations I have participated in, including a deep-learning method to

Chapter 2 Introduction



reconstruct the geometry of the aforementioned coupled waveguide systems. Addi-
tionally, over the course of my PhD, I gained experience in mentoring undergraduate
students and served as a junior advisor to their research projects. Among these,
I guided and advised two students toward a nonlinear optics implementation of
my theoretical work. These novel designs of nonlinear optics crystals are currently
pending publication.

To summarize, this dissertation composed of published research papers is organized
as follows. In Chapter 2, I provide a thorough introduction to my publications, which
are enclosed in Chapter 3. Namely, in Chapter 2.1.1, I present an overview of SNOM,
and lay out the details of my theoretical derivations of multifrequency SNOM, and
describe the experimental setup in Chapter 2.1.2. In Chapter 2.2.1, I acquaint the
reader with the foundations of composite pulses as a means to achieve quantum co-
herent control in two-level systems, and expand the landscape to multi-level systems
with SU(2) symmetry. In Chapter 2.2.2, I propose harnessing the detuning parame-
ter as a novel control knob for composite pulses, thus creating a composite pulse
technique suitable for photonic integrated circuits. Further unpublished research
is described in Chapter 4. Chapter 4.1 outlines the motivation and experimental
setup and results of near-field measurements of persistent photoconductivity, while
Chapter 4.2 is a comprehensive depiction of universal unitary detuning-modulated
composite gates. Chapter 5 is a conclusion and outlook for future work.
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2.1 Introduction to Near Field Optics and Dynamics

The basic experimental set-up in most optics research laboratories consists of a light
source, either a continuous wave or pulsed laser, that illuminates a sample of interest.
One can discover many physical properties of the sample, such as its absorption
spectrum, by placing a detector behind the sample to measure the transmitted light
and in an angle from it, to measure the reflected light. This technique enables one
to obtain a spatial average of the sample’s response to the light source. The fine
details of the sample, such as a spatial inhomogeneity, cannot be resolved in this
manner. This is due, of course, to Abbe’s diffraction limit [1], that states that two
features will not be resolved if the distance between them d is less than half the
probing wavelength \. Specifically, the limit is stated as:
A

= 2.1
d 2nsinb @D

where nsinf is the numerical aperture of the lens with which the object is being
imaged in a medium with a refractive index of n. Namely, in far field optics, the
evanescent fields created in a light-matter interaction do not propagate to the
detector.

In the past few decades, tremendous progress has been made in optical imaging
beyond the diffraction limit [2, 3, 4]. Near field microscopy has revolutionized
this field, as it allows for noninvasive and nondestructive retrieval of deep sub-
wavelength optical information, providing unprecedented information on optical
properties of materials at the nanoscale [5, 6, 7, 8, 9, 10]. Thus the field has opened
a window to phenomenon such as fundamental light-matter interactions, chemical
reactions and transport in two-dimensional materials [11, 12, 13, 14, 15, 16, 17].
The apertureless version of the scattering near field scanning optical microscope
(sSNOM) has expanded to the optical regime the topographic probing capabilities of
the atomic force microscope (AFM). In traditional AFM, a cantilever with a sharp tip
attached to it, is made to mechanically oscillate at its first flexural frequency. The tip
is scanned over the surface of a sample of interest, and any deflection of it, caused
by Van der Waals forces between the tip and sample, is monitored via a feedback
mechanism, thus a topographical image can be formed. The sSNOM utilizes the
AFM’s sharp tip by dithering it in the proximity of a sample and illuminating it by
focused light [18, 19, 20]. Owing to the nonlinearity of the light scattering process
with respect to the tip-sample distance, high harmonic demodulation allows near
field imaging with a spatial resolution mainly limited by the apex of the tip [18].
However, to date, a thoroughly background-free image necessitates implementing
various schemes, such as pseudoheterodyne detection, an interferometric technique
in which a phase modulated reference enables the extraction of the pure near field
signal [21].

Here I will describe the theoretical basis of the model of sSSNOM [18, 19, 20]. Em-
ploying a quasi-electrostatic approach for the tip-sample system, the tip is modeled

Chapter 2 Introduction
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Fig. 2.1: Fundamentals of Near-Field Scanning Optical Microscopy. (a) Tip-sample system
modelled as a polarized sphere p of radius a, oscillating at amplitude A at small
distances z from sample of dielectric constant €. (b) Scattering coefficient from
a tip of radius ¢ = 30nm as a function of normalized tip-sample distance. (c)
Scattering coefficient for a tip dithered at 40kHz, where the minimal tip-sample
distance is half the radius of the tip. (d) Fourier transform of (c). (e) Fourier
components of the scattering cross sections vs. minimum tip-sample distance when
ditherting with a small modulation amplitude of half the tip radius (borrowed
from [18]).

as a sphere of radius r and polarizability «, which is imaged in a sample of dielectric
constant ¢, set at a distance of z away from the tip, as shown in Figure 2.1(a). When
applying an electric field, the tip is polarized with a dipole moment p = «F polarized
perpendicular to the sample’s surface, thus the electric field of the induced probe
dipole is Egipoie = 5. This induces surface charges on the sample whose fields
can be described by use of the method of images. These image dipoles have a dipole
moment p’ = p, where § = (e — 1)(e + 1), which enhances the field at the probe
dipole as:

/

p
=a(F 2.2
p=o(E+ 1671'7‘3) (2.2)

where r = z 4 a. Therefore, the effective polarizability is:

a(l+
CQeff = 1( oeﬁ) (2.3)
" 16713

with a = 47r3(e, — 1)(ep + 2), where ¢, is the dielectric constant of the tip. This
enhancement is only significant at short distances z < r.

Now we apply Mie scattering theory, to calculate the electromagnetic field scattering
cross-section of the probe tip

k4
catt. =
67

assuming the tip’s radius is smaller than the illuminating wavelength [18]. This

C, laer sl (2.4)

scattering cross-section, which is the origin of the weak near field signal of interest,
is a non-linear function of the distance between the probe and sample, by virtue

2.1 Introduction to Near Field Optics and Dynamics



10

of as¢, as seen in Figure 2.1(b). Varying the tip-sample distance with time leads
to a significant modulation of the above near-field scattering coefficient from the
tip, while the scattered light from the cantilever body remains constant [22]. This
is shown explicitly in Figure 2.1(c), where we calculate the scattering cross-section
from a tip dithered at a frequency of 40kHz as a function of time for a minimal
tip-sample distance of zy = 0.5a, where a = 30nm. A Fourier transform of this
anharmonic function produces Figure 2.1(d), the Fourier components of the above.
Figure 2.1(e), borrowed from [18], shows the Fourier components of the scattering
cross-section as a function of the minimum tip-sample distance, when the tip is
dithered with a small modulation amplitude of z; = 0.5a. Here one sees that by
demodulating the detected scattered signal at the higher harmonic frequencies of
the cantilever’s motion, one achieves a narrower cross-section, with a more abrupt
change of signal, as the tip approaches the sample. This is equivalent to effectively
sharpening the probe tip. Nevertheless, while this process results in higher near field
sensitivity to optical measurements, there is a trade-off, since the measured signal
becomes significantly weaker at higher harmonic frequencies.

Chapter 2 Introduction



2.1.1 Multifrequency Excitation and Detection in SNOM
(MFSNOM)

In this section, I will provide an introduction to the findings of increased near
field optical sensitivity and background suppression of the detected signal in an
experimental realization of a multifrequency sSSNOM technique [23]. It has been
previously shown in the atomic force microscopy community [24, 25] that mechani-
cally exciting the AFM cantilever at two or more of its first flexural modes results
in enhanced force sensitivity and improved resolution to topographic images [26].
The coupling between the two mechanical modes is at the origin of this so-called
multifrequency AFM sub-atomic spatial resolution, as the higher harmonics of the
first mode acts as an effective driving force for its higher eigenmodes [27].

In our research, we formulated a theoretical model, based on the bi-modal excitation
of the AFM tip as described in Figure 2.2(a) and a multifrequency detection scheme
in SNOM (MF-SNOM), schematically shown in Figure 2.2(b). It predicts a set of
experimental parameters relevant for the suppression of optical background in the
detected signal. We observe that in the multimodal excitation method, the solution
space for these parameters spreads over a two-dimensional plane, thus allowing
further degrees of freedom in near-field measurements. We experimentally show
that this scheme allows for a further enhanced sensitivity in the measurement of
a near field signal as a function of tip-sample distance. This z-axis sensitivity is
directly related to the in-plane spatial resolution in such measurements [28]. From
our findings, we see that this enhanced sensitivity seems to lead to an improved
resolution in the x-y plane. We believe that this is a feasible method that will allow
for enhanced sensitivity, improved resolution and background-free near field images.

In order to gain a more intuitive understanding of the above in the context of
multifrequency tip excitation, we employed a simplified scattering model [30] to
express the bi-modal near field scattering amplitude as a function of the the bi-modal
motion of the tip at its first two flexural frequencies f; = w/27 and fo = w'/2m,
represented by z(t) = Acos(wt) + Bcos(w't).

The detected signal function is the sum of the near-field scattering amplitude
K[z(t)] = exp{—=(t)/d}, where d is the typical distance for which the near-field
term decays, and a z motion artifact, due to optical interference (background)
Wz(t)] = sin[4= + Z]. Thus, the detected signal function is a sum of the above
S(t) = W(t) + bK(t), where b is the scattering weight, dependent on the scaling of
the scatterer volume, which in our case, is the spherical tip. For the multifrequency

case:

2.1 Introduction to Near Field Optics and Dynamics
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Fig. 2.2: Schematic experimental set-up of Multifrequency Near Field Scanning Optical
Microscopy. (a) Simultaneous bi-modal excitation of cantilever in multifrequency
near field scanning optical microscopy at two first flexural frequencies, where
commonly f ~ 6.27f; [29]. (c) Scheme of experimental set-up.

z(t) = Acos(wt) + Beos (w't)

S(t) = sin |:4>7\TACOS (wit) + %BCOS (w't)} + pe—(Acos(wt)+Beos(w't)) /b
IR 15 9] - s [ s (9]
= ﬂszn [ 5 Acos (wt)] {cos [ 3 Bcos (w't)| — sin 5 Bcos (w't)

+ \}5608 |:4;FBCO$ (w't)] {sin {4;3003 (w’t)} + cos [TBCOS (w't)]}

+ bef(Acos(wt)+Bcos(w’t))/b

Here we can assume that the tip oscillation amplitudes A and the typical distance
for near field decay are much smaller than the illuminating wavelength, and expand
the signal to order O(z*). Separating the different frequency terms leads to a series
of the different coefficients detectable via a lock-in amplifier, such as:

12 Chapter 2 Introduction
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192 d*
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Acos (4wt)

If we define an optical contrast factor R,, as the ratio between the scattering term in
each coefficient that decays as 1/d" and the background artifact that scales as 1/\"
of each n harmonic demodulated signal, the advantage in detecting the signal at
certain frequencies in comparison to others becomes clear. The enhancement in R,
for higher orders of n leads to increased sensitivity to near-field signal, compared to
the optical background. From this point forth, we will refer to detection at a certain
harmonic n as demodulation. We show this explicitly by assuming that for large
tip-sample distances, such as d = 50nm, the near-field scattering term in R; is of the
order of the background term, thus:

drd
V2
R =1

and for the second order optical contrast factor:

b V2X  dmd 1 V2X X 780nm

_ = —_ = = =1.24
d? 1672 \2Xd? 1672  4xd  4750nm

Ry =

This demodulation term is only enhanced by a factor or 1.24 compared to R;. Now
we perform the same calculation for shorter tip-sample distances. For example, if
d = 10nm we can assume a significant near field scattering term. Since b scales with
the volume of the scattering particle d*> meaning that d% ~ const we could calculate
a new scattering weight b, according to its previously calculated value

2.1 Introduction to Near Field Optics and Dynamics
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wm | G | e = Ten
660 | 5.25 27.6
1200 | 9.5 91.7
1580 | 12.5 160

Tab. 2.1: Calculated values of the optical contrast enhancement for demodulation at dif-
ferent harmonics of the mono-modal and bi-modal excitation frequencies for
specified illuminating wavelengths.

b 0.57 b

- - b=4. 1073
d3 50nm3  10nm3 — 56> 10
R, = 0.04

Ry = 0.248

This time, the second harmonic signal is enhanced six-fold compared to the first,
which is a significant enhancement of the near-field signal compared to the optical
background.

A numerical calculation of the values of R,, as a function of illuminating wavelength
for different values of n in the mono-modal case and in the bi-modal case leads to a
practical result. We find that implementing the bi-modal excitation method allows
to obtain the same values of this optical contrast factor with demodulation at lower
harmonics of the sum of the bi-modal frequencies. Namely, the optical contrast
obtained via mono-modal excitation and demodulation at n = 2w is the same as that
achieved via bi-modal excitation and demodulation at n’ = w + w'. A few values of
these enhancement factors are shown in Table 2.1.

For the case of bi-modal tip excitation, we find a clear advantage in demodulating
the detected signal at certain frequencies in comparison to others. For example,
demodulation at the second harmonic of the sum of the two frequencies 2(w + w')
at an illuminating wavelength of 1580nm leads to a 160 fold contrast enhance-
ment, compared with demodulation at the first harmonic of the sum of these two
frequencies. This is the same enhancement achieved in mono-modal excitation
while demodulating the detected signal at the fourth harmonic of the tip oscilla-
tion frequency, compared with demodulation at the second harmonic of this single
frequency.

Similarly, the same near field detection enhancement is predicted to occur for
bi-modal excitation and demodulation at 2w + w’ and for mono-modal excitation
and demodulation at 3w. Namely, we can achieve high optical contrast for lower
demodulation frequencies, thus obtain a stronger signal.

An additional advantage in multifrequency excitation SNOM is the wider range of
tip oscillation amplitudes suitable for eliminating far-field background from the
near-field signal. This could be achieved by expanding the finding [31] that the
total intensity of the signal measured by the detector in a mono-modal SNOM
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setup produces a non-vanishing background term at all n harmonics of the signal,
which is directly proportional to J,,(2ka). In this term, « is the single tip oscillation
amplitude, and k is the wave vector of the illuminating field. In order to suppress
the background, one must choose a in a way that mathematically nullifies this term.

In order to begin this derivation, we define three electromagnetic fields that take
part in the SNOM measurement setup and are considered "optical background" (as
opposed to the optical near-field signals). These are the field backscattered by the
tip shaft E'r , the back reflection of the sample Eg, and the light reflected back by
the lens Fj,, where:

Ep = E}e iadrL
Es = FEYe iAdst (2.5)
E;, = EY

and the phases A¢;, are related to the optical path differences accumulated by the
fields scattered from the tip and by the sample with respect to the one scattered by
the lens, in their travel from the laser to the detector:

Appr, = 2k[lo— a(t)]

(2.6)
A¢5L = 2k [lo — Z(t)]
The total intensity measured by the detector in the SNOM setup is:
BKG = |Er + Eg + Er|?
= |Er|? + |Es|? + |EL|? (2.7)

+ 2Re(ELEs)+ 2Re (ELEL) + 2Re (ELEs)

One can easily show that given

z2(t) = zo+ Az(t)
Co = |Er*+|BEs|® + |EL]
Brs = 2|EpEjg|
Brr = 2|ErEp
Bsr, = 2|EsEp]

¢o = 2klp
o1 = 2k(lo— 20)
¢2 = QkZ()

the background could be written as

2.1 Introduction to Near Field Optics and Dynamics
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BKG

Co + [Brscos (¢2 + 2kAz(t)) + Brrcoseo| cos (2ka(t))
+ [Brssin (¢2 + 2kAz(t)) + Brrsingo| sin (2ka(t))
+ Bpscos (¢ — 2kAz(t))

which is the sum of a DC signal with a series of harmonics with amplitudes that
depend on both the tip vibration amplitude and its distance from the sample.

In order to extend this to the multifrequency SNOM case, we use the Jacobi-Anger
relations for real-valued expressions [32]:

cos (ycosh) = v) + 2 Z " Jan, (77) cos (2n0)

cos (ycosh) = 2 Z )" Jont1 (7) cos [(2n + 1) 6]

and plug in the bi-modal tip oscillation amplitudes

a(t) = aicos(wit) + azcos (wat)
such that
cos (2ka(t)) =
Jo (2kay) + 2 Z " Jon (2kay) cos (anlt)]
L n=1
Jo (2kaz) + 2 Z )" Jon (2kas) cos (2nw2t)]
n=1
— |2 Z )" Jons1 (2kay) cos [(2n + 1) wlt]]
2 Z )" Jont1 (2kag) cos [(2n + 1) wgt]]
and
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sin (2ka(t)) = |2 Z )" Jont1 (2kay) cos [(2n + 1) wlt}] X
_J (2kas) + 2 Z " Jon (2kas) cos (2nw2t)]
L n=1
+ - 0 (2kay) + Z " Jon (2kay) cos (anlt)]
2 Z )" Jon+1 (2kag) cos [(2n + 1) wgt}]
L n=0

Thus, the background term of the DC component in the bimodal case is:

BKGy(ai,as,Az) = Co + Bsrcos [2kAz(t) — ¢1]
+ [Brscos (¢2 + 2kAz(t)) + Brrcoseo| [Jo (2kar) Jo (2kasz)]
+ 0

(2.8)
Since Brg > Bgy, the prevalent term of equation 2.8 will be a product of two Bessel
functions:

BKG() 0.8 JO (2]6@1) J() (2ka2)

Thus, generalizing this analytic derivation to the bi-modal excitation technique
results in an extension of the available solutions for background suppression from a
single tip oscillation amplitude to a two-dimensional plane of possible sets of the
two oscillation amplitudes for each mode of excitation. This is derived from the fact
that the new background term for all harmonics is proportional to the product of
two Bessel functions:

BKG, o« Jn(2kay) x Jy (2kas) (2.9)

In this case, the solution space expands, and one is free to choose from a set of
available tip oscillation amplitudes a; and as, in order to completely cancel this term.
It should be stressed once again that here, the signal should be demodulated at the
composite harmonics of the two mechanical frequencies of the tip.

2.1.2 Experimental Setup of MFSNOM

In order to examine optical near-field measurements with the multifrequency SNOM
technique, we used plasmonic nanostructure arrays, comprised of Au nanobars
and split ring resonators (SRR). These were fabricated via standard electron beam
lithography, and deposited with a height of 100nm on an ITO substrate. The near-

2.1 Introduction to Near Field Optics and Dynamics
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Fig. 2.3: Multifrequency SNOM excitation technical setup. See text for details.

field measurements were done using a NeaSpec neaSNOM, illuminated with a
tunable CW laser (Toptica CTL1550) between 1550-1580nm. We used a Zurich
Instruments UHF Lock-in Amplifier, with its many available oscillators, to externally
drive the AFM cantilever on the one hand, and to demodulate the detected scattered
signal at any frequency of our choice on the other hand. Figure 2.2(b) depicts a
schematic representation of the experimental set-up.

Below are the technical details for setting up a multifrequency excitation and detec-
tion experiment. In Fig. 2.3 I show how I connect the signal output of the UHFLI
to a switch that toggles between the multifrequency and mono-modal excitation.
The switch inputs to the tip the UHFLI signal output by connecting it directly to
input 4 of the master board of the NeaSpec, which is the tapping signal. In Fig. 2.4,
output 5 of the master board of the NeaSpec, which is the SNOM signal, is split to
the optical detector and to the signal input of the UHFLI, where it is demodulated at
the relevant frequencies according to the above theory. The two auxillary outputs
of the UHFLI are connected to input 5 and 6 of the NeaSpec slave board, that are
detected and processed as separate image channels on the NeaSpec software.

I refer the reader to publication 1 [23] in Chapter 3.1, for a detailed description of
my experimental results and analysis.
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Fig. 2.4: Multifrequency SNOM detection technical setup. See text for details.
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2.2 Introduction to Composite Pulses for Quantum
Coherent Control

Quantum coherent control is a field of research which aims to solve the problem
of efficiently steering a quantum system from an initial state to a final state. Such
complete population transfer (CPT) has been the focus of extensive research these
past few decades. This is generally achieved by shaping the duration and area of an
electromagnetic pulse impinged on a system in order to excite it, and by employing
various techniques ensuring this excitation is robust to inaccuracies in the system
parameters and the pulse shape itself. Such control is desired for obtaining high
fidelity in quantum computation and quantum information processing [33, 341],
coherent manipulation of population inversion in atomic and molecular quantum
systems [35, 36, 37, 38], directional optical waveguides [39] and spin control in
nuclear magnetic resonances [40].

M=1 Babi Oscillations

o
o

0L A 0
0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5

Time in units of M Time in units of 7/Qr

—
Pulse Aream™ ©

Fig. 2.5: Dynamics of a two-level system. (a) A general two-level coupled system, with a
ground ¢, and excited v, level, coupling between adjacent levels (2 and detuning
A. (b) Left: A single pulse on a two-level system with zero detuning leads to Rabi
oscillations. Right: The intensity evolution of the system for the initial condition
11 = (1,0). Solid line: Pulse area A. Dashed line: Same pulse area with detuning
of A = 7/15.

To state the general problem, we consider a two-level system, shown in Fig. 2.5(a)
with a Rabi frequency for electric dipole transitions €2(¢). One can excite this
system by using a laser with a frequency wy, that is not the exact frequency of the
energy gap w in this two-level system. Thus, we introduce the detuning parameter
D(t) = ftto A(t")dt' where A = w — wy,. The coherent dynamics of this qubit system
{|1),]2)} is described by the time-dependent Schrodinger equation [35]:

iho, [ ci(t) ] _h [ —At) Q(t) ] [q(t) ] 2.10)
ca(t) 21 Q) A ca(t)

For time-independent coupling, one can perform a unitary transformation to intro-
duce the unitary propagator of this operation:

A A s (A . Q (A
CcOos <5> + zﬂ—g Sin <§> —zﬂ—g Sin (5)

Qo (A (A) — ;A 6in(4
—ig, sin (g cos ( 5 s sm(2)

U(5t) = { ] . (2.11)
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with the generalized Rabi frequency Q, = vQ? + A? and A = Qgt, the pulse area,
which is a product of the generalized Rabi frequency with time.

By impinging the system with a constant resonant pulse (A = 0), one achieves the
well-known Rabi oscillations [41]. Thus, in order to achieve complete population
transfer from the ground state to the excited state of a two-level system, one can
apply a so-called 7w-pulse, seen in Fig. 2.5(b). The solid blue and red lines in
Fig. 2.5(b) show complete population inversion of two levels, while the dashed
lines show a decreased fidelity, due to a detuning of 7 /15, in units of the coupling,
between the excitation laser frequency and the Rabi frequency of the system. From
this example, it is clear that this solution is very sensitive to experimental constraints.
Namely, the state transfer, or the fidelity of the operation, is affected by errors in the
target parameters, which include the coupling, detuning and pulse area. For this
reason, other analytic time dependent methods were derived for precise state transfer.
These include the Landau-Zener, Rosen-Zener and Allen-Eberly models [42, 43, 35],
which allow for an adiabatic solution for very robust population inversion of a
two-level system. These examples require very long and precise manipulation of the
system and excitation parameters, which are not always feasible under experimental
consequences.

Another well-known class of analytical solutions available for robust population
inversion of two-level quantum systems are composite pulses. Composite pulses
are a sequence of pulses with specifically chosen phases, commonly used in nuclear
magnetic resonance (NMR), and for broadband population inversion by ultrashort
pulses [44, 45, 46, 47, 48, 49, 50, 51], which overcome experimental constraints
and relax the need for a perfect system and excitation mechanism. Since NMR
spectroscopy requires precise pulse excitation for spin population inversion, attention
was turned to designing composite sequences to compensate for conventional single
pulse imperfections [52]. These may be due to spatial inhomogeneity, resonance
offset and bandwidth. Thus the performance of composite pulses in guiding a system
to a final state is feasible, accurate and robust. The traditionally quintessential
composite pulse sequence is Levitt’s widely used spin population inversion schemes
for NMR excitation [48]. This composite pulse enables a two-level spin j = 1 system
to undergo accurate excitation, regardless of the pulse or system’s imperfections, by
steering the system step-wise through three pulses described by a total propagator

Urotar = UsU2Uy (2.12)

where each ingredient propagator is calculated according to eq. 2.11 with complex
coupling parameters Q; = A;e"*%, where i = 1,2, 3. Each ingredient pulse has a
specifically chosen pulse amplitude and phase to correct for errors.

2.2 Introduction to Composite Pulses for Quantum Coherent Control
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Fig. 2.6: Complete population transfer in two-level system with detuning of A = 7/15,
in units of the coupling, by three-piece composite pulse sequence for nuclear
magnetic resonance.
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Continuing our example of a two-level system with detuning A = 7/15, in units
of the coupling, this self-correcting composite pulse sequence leads to complete
population inversion, as seen in Fig. 2.6.

This scheme has since opened a wide variety of different composite pulse sequences,
that revolutionized the field of NMR and its applications. While Levitt’s composite
solution, which is comprised of pulses with rectangular temporal shape, is suitable
for NMR experiments, it fails to maintain its efficient nature for pulses of ultrashort
timescales. Thus a different composite pulse scheme was suggested by Torosov
et al. [53, 54] for pulse envelopes of smooth temporal shape , such as Gaussian
pulses. Using these solutions, one can accurately excite two-level optical systems by
tailoring the phases of a composite ultrashort pulse sequence regardless of the exact
ingredient pulse shapes.

This was done by solving for a sequence of N pulses of area A; (where A was
popularly chosen to remain constant at A = 7) and phases ¢y.

UN = Uy (AN)...Ug, (A1) (2.14)

where each ingredient propagator reads

a be~i®
Ug(A) = , (2.15)
‘b( ) [ _b*ez(b a* ]
for the Cayley-Klein parameters a = cos(%) and b = —isin(%). For instance, a
broadband composite sequence is achieved for:
E+1| |k| 7
N
=(N+1-2|—— —| = 2.1
o =wri-2| S 5|5 @10
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where the square brackets denote the floor value of |(k + 1)/2| and |k/2].

Here, the k = 1, ..., N pulses nullify the first 2N — 1 derivatives of the off-diagonal
element of the total propagator at A = «. Thus the total infidelity is of the order of
O(2M).

Generally speaking, in most traditional phase-modulated composite pulses, the
infidelity, or total pulse error is mitigated as a function of the total number of pulses.
This creates a trade-off between the total length of the composite pulse sequence
and its infidelity.

In Chapter 2.2.1, I will present an extension of composite pulses sequences to N-
level systems with SU(2) symmetry. In Chapter 2.2.2, I will provide a rigorous
derivation of a novel class of detuning-modulated composite pulses. Due to the
required organization of this dissertation, my unpublished work on a comprehensive
derivation and study of universal detuning-modulated composite gates is presented
in Chapter 4.2.

2.2.1 Composite Pulses in N-level Systems with SU(2)
Symmetry

Despite the broad implementation of the above-mentioned schemes for two-level

systems, studies of the multi-level case have remained sparse in the field of NMR [55,

52], atomic and optical systems. A handful of schemes have been suggested for the

evolution of multi-level systems, such as adiabatic elimination, Electromagnetically-
Induced-Transparency, stimulated Raman adiabatic passage (STIRAP) and the Landau-
Zener picture [56, 57, 58, 59, 60, 61]. These have been thoroughly studied to

achieve the controlled evolution of a three-level system to a chosen final state. The

Morris-Shore transformation has been used [62, 63] to reduce a multilevel system

composed of N degenerate ground states and one excited state to an effective two-
level system with exact analytic solutions. Yet all of these require the fine-tuning of

experimental parameters in order to achieve efficient population inversion between

the ground state and the excited state.

Cook, Shore and Hioe [64, 65] introduced a method of exciting an N-level system
with SU(2) symmetry, to achieve an extension of Rabi oscillations between palin-
dromic states. SU(2) is the special unitary Lie algebra group of 222 matrices with a
determinant value of 1. Mathematically, these are defined as

[a be~i®

—brei?  g* (2.17)

where «, 8 € and |a|? + | 3|2 = 1. This group is isomorphic to the special orthogonal
group of order 3, or SO(3), which represents rotations on a sphere. Pauli matrices
are a useful basis in SU(2) to describe the dynamics of two-level physical systems

2.2 Introduction to Composite Pulses for Quantum Coherent Control 23



24

3> —— Ay, =34,
I Q5 =139
12> E Ay =24
Q, =29,

| -
1> ESE—— =4

| Q=139
[0 >

Fig. 2.7: Example of a four-level system with non-degenerate levels and SU(2) symmetry.

such as molecules and spins, as well as the energy transfer between a coupled
waveguide photonic system, as I will discuss in a later chapter.

I now expand the composite pulse schemes developed for NMR and ultrashort
temporal pulses to the general case of an N-level system with SU(2) symmetry. We
consider non-degenerate levels, in which the diagonal elements of the Hamiltonian
representing the system’s dynamics are the cumulative detunings A,, of the excitation
laser frequency from each Bohr frequency, and the off-diagonal elements link the
different dipole transition moments between each two adjacent levels to the exciting
electric field amplitude whose carrier frequency matches the Bohr frequency of this
exact transition, namely €2,, (i.e. the Rabi frequency for a transition between two
adjacent levels). A variety of N-level solutions has been presented over the years, and
in our manuscript, we refer to the Jacobi solution, given by Q,, = Qg/n(N — n) and
A, =nlAg + Dy. By using the irreducible matrix representation for SU(2) symmetry
it was shown [65] that these off-diagonal elements are not equidistant.

For example, consider the four-level system in Fig. 2.7. One can illuminate this
system and excite one of three level pairs, with one of three fields: €71 (t) = Ape“r!
with detuning Ay = w1 — wio, €r2(t) = Apze™r2! with detuning Ay = wry — woy OF
er3(t) = Apze™rst with detuning A3 = w3 — wso. In this case, the Rabi frequencies
are 0 = 2Ar1(t)dio/h, Q2 = 2A12(t)d21 /R, and Q3 = 2A13(t)ds2/h. Assuming the
Jacobi solution, and choosing Dy = 0, we set the excitation laser frequencies, such
that the detunings are A1 = Ay, As = 2Ag and Az = 3A(. One can also chose the
values of A to comply with the Rabi frequencies in this solution are Q; = /39,
Qs = 20 and Q3 = V3.

Thus, systems that portray SU(2) symmetry enable one to express the Hamiltonian
of the N-level system in a compact and generalized form, and generally the levels
are not constrained to be equal. Many physical systems portray these symmetries
(e.g. topological insulators and p, + ip, superconductors), thus the conditions of the
following derivations may be useful in the future for exciting such systems.
Furthermore, little composite pulse sequences have been derived for N-level systems
in the past [55]; this has led us to derive a generalization of the NMR spin inversion
scheme to a spin j system, displaying SU(2) symmetry. In the case of a magnetically
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excited two-level system, the spacings between the levels are known to be equal.
The Hamiltonian which describes such N = 2j + 1-level systems exists in a space
spanned by the generators of the SO(3) group:

H = Re(Q)d, + Im(Q)d, + AG, (2.18)

where o; are the Pauli matrices of spin j. These dynamics can be geometrically
described by trajectories on the so-called Majorana sphere [66], a generalization of
the Bloch sphere for N-level systems with SU(2) symmetry.

In publication 2, presented in Chapter 3.2, I lay out a full derivation of the dynamics
of an N-level system, coherently driven by composite pulses. The paper includes a
lengthy introduction, along with a thorough description of the Majorana geometric
representation of these dynamics.

By choosing specific values of 2, given A = 0, we achieved robust population
inversion via ultrashort pulses between the first and the Nth level of an N-level
system with SU(2) symmetry. This was done by employing the composite sequences
derived by Torosov et al. [53]; particularly broadband (BB), narrowband (NB)
and passband (PB) excitation schemes and by employing the well-known three-
pulse NMR sequence [48]. Furthermore, our approach allows for precise control
of the above processes in population inversion between palindromic states, namely
between levels m and N — m + 1. These enable the controlled manipulation of
the dynamics of excitation processes in multi-level materials, for the design of high
fidelity infrastructure for quantum information.

2.2 Introduction to Composite Pulses for Quantum Coherent Control
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2.2.2 Detuning Modulated Composite Pulses (DMCPs)

With the advent of quantum computers and high demand for accurate methods of
quantum information processing (QIP), an immediate need for high-fidelity quantum
state preparation and transfer emerged for any qubit architecture. This conveys a
substantial challenge in practical realizations of QIP, where the admissible error
of NIST-era quantum operations is smaller than 10~* [33]. Such realizations for
quantum computation hardware include trapped ions, atomic systems and transmon
qubits. An additional promising candidate for advancing quantum technologies is
integrated photonic circuits due to their scalability and on-chip integration capacity.
The fidelity of operations in a photonic circuit remains below the QIP due to unavoid-
able fabrication errors. Even small systematic errors, i.e., due to imperfections in
fabrication or in the experimental control knobs, reduce the fidelity of state transfer
below the fault-tolerant threshold.

Plenty of scientific endeavours have been made to tackle the problem of accurate light
transfer in photonic waveguide systems. These include methods of chirped adiabatic
passage [67], and the previously-mentioned techniques STIRAP [68, 69], and a
more recent application of adiabatic elimination to waveguide systems [70, 71].
Yet, all of these solutions rely on adiabatic, or very gradual, changes of one of the
system parameters with respect to another. Thus, these solutions result in rather
long propagation distances that are not scalable.

Our initial motivation for this work was to develop the first composite-pulses adap-
tation suitable for implementation in photonic waveguide systems. In the previous
sections, I discussed composite pulses (CPs) as a powerful tool to correct for control
and system errors in two- and multi-level systems with SU(2) symmetry. CPs have
been applied in physical realizations of QIP including trapped ions and atomic sys-
tems [54, 72, 73]. However, CPs have not previously been used to correct for errors
in photonic waveguide systems, as existing sequences require control of the phase of
the coupling, which in integrated photonics is a real parameter. Our present research
is the first to address this limitation and to derive CPs for any qubit architecture
including integrated photonic systems.

In publication 3, featured in Chapter 3.3, we utilize off-resonant detunings as
the control parameters to derive new families of CPs for high-fidelity unitary gate
preparation within the quantum error threshold. The prerequisites of this derivation
include the notion that the propagation of light in a coupled waveguide system
is analogous to the time evolution of electron population in atomic levels. In Fig.
2.8, I highlight the main points of this analogy to the simplest configuration of two
adjacent waveguides. When light is injected into an individual waveguide, it holds
an uncoupled light propagating mode with an evanescent field tail that extends
beyond the geometric boundaries of the waveguide. A second waveguide, placed
in proximity to the first, is a perturbation to to this evanescent field. This is the
origin of the coupling between the two waveguides, thus the light injected into
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the first waveguide will eventually leak into its neighbor. The spatial exchange of
the light will oscillate in a manner similar to Rabi oscillations in an atomic system.
Mathematically, this is described by the coupled mode equations [39]:

LB (2) =iBaEr(2) + ir12E2(2)

(2.19)
LEy(2) =iBpBa(2) +iki2Er(2)

Here, E;(z) is the electromagnetic field amplitude in each waveguide and g; is the
respective complex propagation constant of the individual uncoupled mode (see Fig.
2.8). Using perturbation theory, the coupling is approximated by:

Kij = g//[e(a:,y) — e(j)(a:,y)]ﬁgf)Ef)dxdy (2.20)

w is the frequency of the electromagnetic field propagating in the system and ¢(x, y)
and €\9) (z, y) are the permittivity distributions of the coupled waveguide system and
waveguide j. We can solve eq. 2.19 for its eigenmodes by assuming a solution of
the form E; = A;e’P*. The eigenmodes are a superposition of the symmetric and

antisymmetric uncoupled waveguide modes, namely:

Ei(z) = a1(A+ M)ew“ + as(A — \/mwﬂ*z (2.21)

Es(2) = a1k12€P4% + agkigetP-#

— :Ba+8b:|: AQ 2
Pe= T E AT, (2.22)

— Ba—B
A= Fagt

The couple mode equation is finally linearized to:
cos(Qgz) + iQAgsin(ng) i%sin(ﬂgz)
E5(0)

Es(z)
(2.23)
where Q, = /A? + k2, and K1y = % If we assume that £;(0) = 1 and
E5(0) = 0, the light propagation in each waveguide spatially oscillates in intensity,

i%sin(ﬂgz) cos(Qyz) — iQAgsin(ng)

as depicted in Fig. 2.9.

The aim of this research was to utilize the detuning as a control parameter and
create a step-wise steering of light from one waveguide to another. By changing the
relative widths of different segments of the coupled waveguides, we were able to
achieve complete light transfer that is robust to errors in target segment lengths,
widths and distances between the waveguides. It is important to note that while this
work was initially developed with a photonic implementation in mind, we derived a
very general and comprehensive theory that can be used on any qubit system and
any multi-level system with SU(2) symmetry. Furthermore, Chapter 4.2 is a direct
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Fig. 2.8: Comparison between control parameters in a two-level atomic system and a
two-waveguide integrated photonic circuit. The ground state in the integrated
circuit is the light intensity injected to waveguide 1 (black). Due to the proximity
between the two waveguides set at a distance g, the light intensity couples « into
waveguide 2, after a propagation distance (inversion length) that is a function of
g. If both waveguides are identical in material and geometry, they are said to be
"on-resonance", otherwise there is a real-valued detuning A which is set by the
difference in the respective propagation constants of the waveguides g;.
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Fig. 2.9: Light intensity vs. propagation distance in coupled waveguide systems. (a)

Simulated propagation of light in two identical resonant waveguides, with A = 0.

The light intensity spatially oscillates between the two adjacent waveguides, fully
coupling from one to the other. (b) Simulated propagation of light in two detuned

waveguides, with A # 0. One waveguide is wider than its neighbor, resulting in
incomplete light transfer.
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(but not yet published) extension of this work to universal detuning-modulated
composite pulses to create unitary gates suitable for QIP.

In what follows, we solve eq. 2.10, and assume 2(¢) and A(¢) real and constant,
which is well-suited for the foreseen implementation in coupled waveguides and in
optical elements for generating higher harmonics. Regardless of this assumption,
our pulses are also valid in systems with complex coupling parameters.

The unitary propagator of the time evolution governed by eq. 2.10 is found according
to U(t,0) = e~/h I\ H®dt \which for constant  and A reads as eq. 2.11.

The propagator U (dt) evolves the state of the qubit from the initial time ¢, to the
final time ¢ according to c(t) = U(dt)c(tp). If the initial state of the qubit at ¢, is |1),
the population of the excited state |2) at time ¢ is found by the modulus squared of
the off-diagonal propagator element |Uyo(6t)|2.

Assuming a composite pulse sequence comprising N individual off-resonant pulses
with Rabi frequencies €2,, and detunings A,,, the propagator for the total composite
pulse sequence is given by the product U (") (T,0) = Un(0tn) Un—1(0tn—1) ... Ur(dt1)
where 6t,, = (t,, — t,_1) is the duration of the n'" pulse (t, = 0 and ty = T). We
require that the composite sequence produces a complete qubit flip at the end
of the evolution, such that the off-diagonal element of the total sequence fulfills
U (T, 0)2 = 1.

For example, given a N = 2-piece composite pulse sequence with A;/Q = a and
Ao/ =b:

A . a A 1 . A
[ (N=2) (T.0) = coss + LA Sing LA Sing »
’ —i—L_gin4d cosd —i—9_gind
V1+a? 2 2 V1+a? 2
A b A 1 A (2.24)
( coss + L AESing U Esing )
1 i A A_;_ b i A
e Sing €08 — I a3 SING
Plugging in A = m, this is:
—1—ab a—b
N=2 2 2 2 2
U( )(T, 0) _ \/1+%7\c{1+b Vlttzlf\/alb—i_b (2.25)
V1+a2V/1+b2  V/1+a2V1+b2

Thus, comparing this total propagator to a & = 7 rotation around the # axis of the
Bloch sphere:

R.(a) = [ (2.26)

cosg  —ising ]
—ising  cosg
we find the detuning parameters necessary to achieve complete state transfer for a
two-piece DMCP are (a,b) = £(1,—1).

In order to derive a robust composite sequence that corrects for imperfections in
the pulse area, we nullify the partial derivatives of the off-diagonal element of the
total propagator %\Ul(év ) (T,0)|%, at A = 7. This element is the state transition
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probability p = Q%sinz( é). We assume, for example, that the error lies solely in
the pulse area A = 7(1 + ¢) that is decoupled from the coupling and the detuning
parameters 2 and A. Thus, nullifying up to the k" derivatives ensures that the error
in the state transition probability is of the order of e**1,

A first-order pulse is achieved by nullifying up to the fourth derivative (k = 1,2, 3)
and are robust to an error in the pulse area up to the order of O(e?). Second-order
composite sequences, are achieved by nullifying up to the sixth derivative of the
off-diagonal propagator element and are robust up to the order of an error in the
pulse area of O(e").

In contrast to previous works [53], the pulse area A for an off-resonant pulse is a
function of all systematic parameters—pulse duration, amplitude, and detuning—
thus, the detuning-modulated composite pulses presented here are robust against
various systematic errors by design.

The results of this work are described and illustrated in publication 3, featured
in Chapter 3.3. A thorough derivation of additional work on detuning-modulated
composite pulses is available in Chapter 4.2 and in the Appendix. Specifically,
in Chapter 4.2, I present my unpublished work (which is currently in review)
on a comprehensive theory to derive detuning-modulated universal unitary gates,
enabling robust state transfer from any initial state. In the Appendix, I lay out the
technique to realize detuning-modualted composite pulses in quantum integrated
photonic circuits.

2.2 Introduction to Composite Pulses for Quantum Coherent Control
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Near-field scanning optical microscopy has revolutionized
the study of fundamental physics, as it is one of very few
label-free optical noninvasive nanoscale-resolved imaging
techniques. However, its resolution remains strongly lim-
ited by the poor discrimination of weak near-field optical
signals from a far-field background. Here, we theoretically
and experimentally demonstrate a multifrequency excita-
tion and detection scheme in apertureless near-field optical
microscopy that exceeds current state-of-the-art sensitivity
and background suppression. We achieved a twofold
enhancement in sensitivity and deep subwavelength resolu-
tion in optical measurements. This method offers rich
control over experimental degrees of freedom, breaking
the ground for noninterferometric complete retrieval of
the near-field signal.  © 2017 Optical Society of America

OCIS codes: (180.4243) Near-field microscopy; (180.5810) Scanning
microscopy; (240.6380) Spectroscopy, modulation.

https://doi.org/10.1364/0L.42.003157

In the past few decades, tremendous progress has been made in
optical imaging beyond the diffraction limit [1-3]. Near-field
microscopy has revolutionized this field, as it allows for non-
invasive and nondestructive retrieval of deep subwavelength
optical information, providing unprecedented information
on optical properties of materials at the nanoscale [4-9].
Thus, the field has opened a window to phenomenon such
as fundamental light-matter interactions, chemical reactions,
and transport phenomenon in two-dimensional materials
[10-18]. The apertureless version of the scattering near-field
scanning optical microscope (sSSNOM) has expanded to the
optical regime from the topographic probing capabilities of
the atomic force microscope (AFM). The sSNOM udilizes
the AFM’s sharp tip by dithering it in the proximity of a sample
and illuminating it by focused light [19-21]. Owing to the
nonlinearity of the light scattering process with respect to
the tip-sample distance, high harmonic demodulation allows
near-field imaging with a spatial resolution mainly limited
by the apex of the tip [19,22]. However, to date, a thoroughly

0146-9592/17/163157-04 Journal © 2017 Optical Society of America

background-free image necessitates implementing various
schemes, such as pseudoheterodyne detection, an interferomet-
ric technique in which a phase modulated reference enables the
extraction of the pure near-field signal [23].

In this Letter, inspired by the recently introduced multifre-
quency AFM scheme resulting in subatomic topographic
resolution [24-27], we introduce our newly formulated theo-
retical model, based on the bimodal excitation of the AFM
cantilever as described in Fig. 1(a) and a multifrequency detec-

tion scheme in scattering SNOM (ME-SNOM). Our model

\

1st mechanical mode f;

<

2nd mechanical mode
f; ~ 6.27f;

(©) Signal Processing
(Demodulation) Analyze signal at

h composite frequencies:

f1+£2, 2f1+2f2
f1+2£2, 2f1+£2, etc.

Func
tion Cen erator \)\

Signal Input
Signal ;
Output Near-Field
Detector
Fig. 1. (a) Simultaneous bimodal excitation of cantilever in multi-

frequency near-field scanning optical microscopy at two first flexural
frequencies [28]. (b) Tip-sample system modeled as a polarized sphere
of radius 4, oscillating at amplitude A at small distances z from the
sample of dielectric constant €. (c) Scheme of experimental setup.
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predicts a set of experimental parameters relevant for the
suppression of optical background in the detected signal.
We observe that in the multimodal excitation method, the
set of possible experimental parameters spans over a two-
dimensional plane, thus enabling further degrees of freedom
in near-field measurements. We experimentally show that this
scheme allows for further enhanced sensitivity in the measure-
ment of a near-field signal as a function of tip-sample distance.
From our current findings, we see that this enhanced sensitivity
seems to lead to an improved resolution in the x—y plane. We
believe that this is a feasible method that will allow for
enhanced sensitivity, improved resolution, and background-free
near-field images.

The theoretical basis of our model employs a quasi-
electrostatic approach for the tip-sample system. The tip is
modeled as a polarized sphere p of radius 7, which is imaged
in a sample of dielectric constant €, set at a distance of z away
from the tip, as shown in Fig. 1(b). Using the method of
images, one can calculate an effective polarizability ag, and
apply Mie scattering theory, to calculate the electromagnetic
field scattering cross-section of the probe tip Cye = g | |2,
assuming its radius is smaller than the illuminating wavelength
(k is the wavenumber of the illuminating wave) [19]. This
scattering cross-section, which is at the origin of the weak
near-field signal of interest, is a nonlinear function of the dis-
tance between the probe and sample, by virtue of . Varying
the tip-sample distance with time leads to a significant modula-
tion of the above near-field scattering coefficient from the tip,
while the scattered light from the cantilever body remains con-
stant [29]. Therefore, by demodulating the detected scattered
signal at the higher harmonic frequencies of the cantilever’s
motion, one could achieve a narrower cross-section, with a
more abrupt change of signal, as the tip approaches the sample.
This is equivalent to effectively sharpening the probe tip.
Nevertheless, while this process results in higher near-field
sensitivity to optical measurements, there is a trade-off, since
the measured signal becomes significantly weaker at higher
harmonic frequencies.

In our analysis, we employed a simplified scattering model
[30] to express the bimodal near-field scattering amplitude as a
function of the bimodal motion of the tip at its first two flexural
frequencies, |, = w/2n and f, = ®'/2x, represented by
z(t) = A cos(wr) + B cos(w't). The detected signal function
is the sum of the nearfield scattering amplitude
K[z(2)] = exp{-2(¢)/d}, where d is the typical distance
for which the near-field term decays, and a z motion
artifact, due to optical interference (background) Wlz(z)] =
sin[% +%]. Thus, the detected signal function is a sum of
the above:

S(r) = W(r) + 6K (2), (1)

where 4 is the scattering weight, dependent on the scaling of the
scatterer volume, which in our case, is the spherical tip.

We expand the signal to the fourth order, assuming that the
tip excitation amplitudes and the typical distance for near-field
decay are much smaller than the illuminating wavelength.
Separating the different frequency terms leads to a series of
the different coefficients one could detect via a lock-in ampli-
fier, such as
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S(x)~DC —I—% {% (%) ’ + %] AB cos[(w + »')¢]

1 [14z\4 1 b
+ [75 <57) + 5%} A?B? cos| 2w +2w")7]. (2)

We define an optical contrast factor R,, as the ratio between
the scattering term in each coefficient that goes as 1/4” and the
background artifact that goes as 1/4” of each » harmonic
demodulated signal; the advantage in detecting the signal at
certain frequencies in comparison to others becomes clear.
An enhancement in R, for higher orders of 7 leads to increased
sensitivity to the near-field signal, compared to the optical
background. From this point forth, we will refer to detection
at a certain harmonic 7 as demodulation. Implementing the
bimodal excitation method allows us to obtain the same values
of this optical contrast factor by demodulation at lower har-
monics of the sum of the bimodal frequencies. Namely, the
optical contrast obtained via monomodal excitation and
demodulation at #» = 2w is the same as that achieved via
bimodal excitation and demodulation at #»' = w + w'. A
few values of these enhancement factors are shown in Table 1.

In particular, we find a clear advantage, leading to a 160-fold
contrast enhancement, in demodulating the detected signal
at the second harmonic of the sum of the two frequencies
2(w + ') for an illuminating wavelength of 1580 nm, com-
pared to demodulation at @ + @’. This is the same enhance-
ment achieved in monomodal excitation while demodulating
the detected signal at the fourth harmonic of the tip oscillation
frequency, compared to demodulation at the second harmonic
of this single frequency. Similarly, the same near-field detection
enhancement is predicted to occur for bimodal excitation and
demodulation at 2w + @' and for monomodal excitation and
demodulation at 3w. Thus, one could achieve a high optical con-
trast for lower demodulation frequencies, and obtain a stronger
signal.

We generalized to the multifrequency regime the finding of
Ref. [31] that the total intensity of the signal measured by the
detector in a monomodal SNOM setup produces a nonvanish-
ing background term at all # harmonics of the signal, directly
proportional to /,(24a;). In this term, 4; is the single tip os-
cillation amplitude, and £ is the wavenumber of the illuminat-
ing field. To suppress the background, one must choose #; in a
way that mathematically cancels this term. Bimodal excitation
results in an extension of the available solutions for background
suppression from a single tip oscillation amplitude to a two-
dimensional plane of possible sets of the two oscillation ampli-
tudes for each mode of excitation. This is derived from the new
background term being proportional to the product of two
Bessel functions, namely,

BKG, = J,(2kay) x ] ,(2ka;). 3)

Table 1. Calculated Values of the Optical Contrast
Enhancement for Specified llluminating Wavelengths

660 5.25 27.6
1200 9.5 91.7
1580 12.5 160
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Thus, in this case, the solution space expands, and one can
choose from a set of available tip oscillation amplitudes #; and
a, to completely cancel this term, while demodulating the
signal at the composite harmonics of the two mechanical
frequencies of the tip.

To examine optical near-field measurements with the multi-
frequency SNOM technique, we used plasmonic nanostructure
arrays, comprising Au nanobars and split ring resonators
(SRRs). These were fabricated via standard electron beam
lithography, and deposited with a height of 100 nm on an
indium tin oxide substrate. The near-field measurements were
done using a modified NeaSpec neaSNOM, illuminated with a
tunable CW laser (Toptica CTL1550) between 1550 and
1580 nm, with 20 mW delivered to the tip. We used a
Zurich Instruments UHF 600 MHz lock-in amplifier, with its
many available oscillators, to externally drive the AFM candilever
on the one hand, and to demodulate the detected scattered signal
at any frequency of our choice on the other hand. Figure 1(c)
depicts a schematic representation of the experimental setup.

To compare the traditional monomodal SNOM technique
with our bimodal method, we performed two different sets of
measurements. First, the tip was made to mechanically vibrate
monomodally at its first flexural frequency f, = 70 kHz, a
characteristic value slightly different for each tip, at a free os-
cillation amplitude of 2; = 100 nm, and the near-field optical
signal was collected at this frequency and its higher harmonics.
Next, the bimodal excitation method was employed; the tip was
vibrated simultaneously at zwo of its first flexural frequencies,
and f, = 420 kHz, at oscillation amplitudes of ~(2; = 100 nm,
a, =100 nm), and the collected near-field optical signal was
demodulated at multifrequency harmonics, theoretically pre-
dicted to display the same near-field-to-background contrast
as their monomodal counterparts, such as f; + f,, which is
equivalent to 2/ . We note that in all our measurements, we
used the same external lock-in amplifier, with the same detection
parameters, such that the two measurements are comparable.

We initially measured the detected near-field signal of a
single point of high signal intensity in each nanostructure as
a function of the tip-sample distance to test the near-field sen-
sitivity of this technique. Figure 2(a) is a comparison of these
measurements, employing the standard monomodal method,
demodulated at 4, versus the bimodal technique, demodu-
lated at 2(f, + f,). It is apparent that the bimodal method
exhibits the desirable tip sharpening effect [19], as its narrower
signal abruptly changes closer to the sample, with a faster rise of
approach of 1/23, compared to 1/22, for the monomodal mea-
surements. A further support for this claim is the twofold
enhancement in the sensitivity of this measurement exhibited
by the decrease in the FWHM. The FWHM marked in the
bimodal measurement is 20 nm, roughly half of that extracted
from the monomodal measurement, 37 nm. This implies that
the signal detected via the monomodal method at z = 35 nm
[blue curve in Fig. 2(b)], for example, contains an optical back-
ground that is absent from the signal detected via the bimodal
method [red curve in Fig. 2(b)].

To examine whether the enhanced sensitivity translates into
improved resolution, we performed a complete near-field scan
of a 540 nm Au nanobar, illuminated with polarization along its
long axis, employing both techniques, shown in Fig. 3. The
inset of Fig. 3(a) is a near-field image obtained by monomodal
excitation and signal demodulation at 4f,. The inset of

Vol. 42, No. 16 / August 15 2017 / Optics Letters 3159

~Z-2

1
@) i
WS Monomodal

T 4 q FWHM = 37nm

«

= 1as Bimodal

G 18 FWHM = 20nm

g

=

~Z-3

0 50 100 150 200

(b)

Real Signal

Optical Signal

_/ Measured Signal

Lateral Distance

Fig. 2. (a) Measured (black) and fitted (blue and red) near-field sen-
sitivity measurements. (b) Cartoon of optical signal obtained via a near-
field scan; accuracy of measurement is proportional to effective tip size.

Fig. 3(b) is the same image obtained by bimodal excitation
and signal demodulation at 2/, 4+ 2f,. We note low intensity
points, located at the left edge and the middle of the sample,
that appear sharper in the image obtained by the bimodal
excitation method. We quantified this by plotting the signal
intensity, proportional to the near-field scattering, as a function
of lateral distance, measured along the white-dotted line in each
of the above images.

The low intensity points in each figure are depicted by dips
in these line plots. While the FWHM of the left dip obtained in
Fig. 3(a) is 10.4 nm, it is narrowed down to 6.7 nm in the
bimodal measurement in Fig. 3(b). Moreover, the FWHM
of the middle dip decreases by a factor of over 2 in the bimodal
scheme, implying an increase in spatial resolution. This finding
complies with the notion that the spatial resolution of SNOM
measurements is directly proportional to the z axis sensitivity

a b .
»-:( ) Monomodal (®) Bimodal
S ; 1 i
©
N
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20.96
[3)
-
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g o 100 200 00 400 00 600 *%0 " 100 200 300 400 500 600
x(nm) x(nm)

Fig. 3. Comparison of near-field optical image obtained by
(a) monomodal excitation and detection on 4/, and (b) bimodal
excitation and detection on 2f + 2f,. The line plots of the signal
intensity versus lateral distance, measured along the white-dotted line
in the inset images.
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[32,33], as depicted in Fig. 2(b). Namely, a bulkier probe will at
the same time be less depth sensitive and smear the lateral de-
tails as well as the optical signal, thus leading to a decrease in
resolution. The increase in resolution is consistent, although
not as prominent, for third-harmonic measurements, obtained
via monomodal excitation and detection at 3/, and via
bimodal excitation and detection at f; + 2/, (not shown).

Furthermore, in the above comparisons, the monomodal
excitation measurements exhibit so-called “z artifacts.” These
include parasitic low-intensity streaks in the inset of Fig. 3(a),
originating from topographic features, that do not appear in the
bimodal measurements, along with reduced topographic arti-
facts at the edge of the sample.

Figure 4(a) is a theoretical simulation of the tip oscillation
amplitude values for complete background suppression, accord-
ing to Eq. (3) calculated for the experimental variables of the
images in Fig. 3, where A = 1550 nm. The red line in Fig. 4(a)
represents the single value of this amplitude in the monomodal
case of 2; ~ 300 nm. The blue range of values are the tip os-
cillation amplitude pairs (2;, 2,) one could chose to suppress
the background contribution to near-field measurements using
the bimodal technique. We chose experimental values to maxi-
mize the near-field signal, while ensuring that this amplitude is
at least a factor smaller than the illuminating wavelength, so
that the theoretical model holds. Figure 4(b) is the same cal-
culation, where the signal is demodulated at 3 /', in the mono-
modal case, and at f; + 2, in the bimodal case. In Fig. 4(c)
the signal is demodulated at 2 /', in the monomodal case and
at f, + f, in the bimodal case. The range of available tip
oscillation amplitudes expands as the bimodal demodulation
frequencies rises, where the single oscillation amplitude, which
depends on the illuminating wavelength, remains the same.

In conclusion, we have theoretically introduced a novel mul-
tifrequency excitation and demodulation technique to effi-
ciently extract a near-field signal with improved sensitivity
and deep subwavelength resolution reaching 4/230. Our exper-
imental results demonstrate an enhanced tip-sharpening effect
for bimodal excitation versus monomodal excitation leading to
improved spatial resolution. This is a comprehensive and fea-
sible experimental method due to its many degrees of freedom,
resulting in background suppression and increased optical
contrast with a high signal-to-noise ratio. The richness of
the technique allows the conventional near-field scattering-type
method to be expanded to detect weaker near-field signals at
lower demodulation harmonics, thus enabling their thorough

(a) (b)
400 400
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' Bimodal S 0
Solutions @ o
£ ° 200 400
£ (c) a1 (nm)
g 40
E 300
Monomodal £ 0
Solution i g
100 200 300 a0 ° 20 400
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Fig. 4. Simulation of tip oscillation amplitude values for complete
optical background suppression; comparison of monomodal versus
multifrequency technique. See text for details.
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measurement. Our proof of concept breaks the ground for an
unmatched capability of near-field optical detection, without
compromising the subwavelength spatial resolution.

Funding. Isracl Science Foundation (ISF) (1433/15);
PAZY Young Researcher Grant.
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High fidelity and robustness in population inversion is very desirable for many quantum control
applications. We expand composite pulse schemes developed for two-level dynamics and present an
analytic solution for the coherent evolution of an N-level quantum system with SU(2) symmetry, for
achieving high fidelity and robust population inversion. Our approach offers a platform for accurate
steering of the population transfer in physical multi-level systems, which is crucial for fidelity in quan-
tum computation and achieving fundamental excitations in nuclear magnetic resonances and atomic
physics. We also introduce and discuss the geometrical trajectories of these dynamics on the Majorana
sphere as an interpretation, allowing us to gain physical insight on the dynamics of many-body or
high-dimensional quantum systems. Published by AIP Publishing. https://doi.org/10.1063/1.5013672

Il. INTRODUCTION

Complete population transfer (CPT) from one quantum
state to another has been the focus of extensive research these
past few decades. This is generally achieved by shaping the
duration and area of an electromagnetic pulse impinged on a
system in order to excite it and by employing various tech-
niques ensuring this excitation is robust to inaccuracies in the
system parameters and the pulse shape itself. Such control is
desired for obtaining high fidelity in quantum computation and
quantum information processing,> coherent manipulation of
population inversion in atomic and molecular quantum sys-
tems,>© directional optical waveguides,” and spin control in
nuclear magnetic resonances.®

A handful of solvable models have been suggested and
widely used for the coherently induced dynamics of two-level
quantum systems. These include Rabi oscillations, in which
a constant external field oscillating near the resonance of a
two-level system is applied to achieve population inversion’
due to an exact odd number of so-called & pulses. This solu-
tion is very sensitive to experimental constraints, such as a
mismatch between the frequency of the external field and
the system’s resonance, known as detuning. Thus, other time-
dependent methods were derived, including the Landau-Zener,
Rosen-Zener, and Allen-Eberly models,> %11 which allow for
an adiabatic solution for very robust population inversion of
a two-level system. However, these examples require very
long and precise manipulation of the system and excitation
parameters, which are not always feasible under experimental
consequences.

Another class of analytical coherent solutions are com-
posite pulses, which overcome such experimental constraints,
and relax the need for a perfect system and excitation
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mechanism. These are a sequence of pulses with specifically
chosen phases, commonly used in nuclear magnetic resonance
(NMR), and for broadband population inversion by ultrashort
pulses.!”"!? Since NMR spectroscopy requires precise pulse
excitation for spin population inversion, attention was turned
to designing composite sequences to compensate for conven-
tional single pulse imperfections.'® These may be due to spatial
inhomogeneity, resonance offset, and bandwidth. Thus the per-
formance of composite pulses in guiding a system to a final
state is feasible, accurate, and robust.

Among these pulse sequences are Levitt’s widely used
spin population inversion schemes for NMR excitation. ' This
composite pulse enables a two-level spin j = % system to
undergo accurate excitation, regardless of the pulse or system’s
imperfections, by steering the system step-wise through three
pulses. This scheme has since opened a wide variety of differ-
ent composite pulse sequences, which revolutionized the field
of NMR and its applications. While Levitt’s composite solu-
tion, which is comprised of pulses with rectangular temporal
shape, is suitable for NMR experiments, it fails to maintain its
efficient nature for pulses of ultrashort time scales. Thus a dif-
ferent composite pulse scheme was suggested more recently
by Torosov et al.’*?! for pulse envelopes of smooth tempo-
ral shape, such as Gaussian pulses. Using these solutions, one
can accurately excite two-level optical systems by tailoring the
phases of a composite ultrashort pulse sequence regardless of
the exact ingredient pulse shapes.

Despite the success of the above schemes for two-
level systems, studies of the multi-level case have remained
sparse in the field of NMR,!®?? atomic, and optical sys-
tems. Adiabatic elimination, Electromagnetically-Induced-
Transparency, stimulated Raman adiabatic passage (STIRAP),
and the Landau-Zener picture’>~>® are solutions which have
been thoroughly studied to achieve the controlled evolution
of a three-level system to a chosen final state. Another one
of the known solutions for N-level coherent dynamics was

Published by AIP Publishing.
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FIG. 1. Coupling scheme in atomic physics. (a) General
N-level coupled system, with a ground ¢| and excited ¢
level, coupling between adjacent levels Q,, and detunings

A, (b) Continuous line: A single (M = 1) pulse of rectan-
gular temporal shape, defined as a 7 pulse. Dashed line:
A single 7 pulse of Gaussian temporal shape. (c) The
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population evolution of a two-level system for the initial

condition ¢| = (1, 0) under a single 7 pulse. Population
3 inversion is marked by a black dashed line at 7 = j/Qg,
where for a two-level system, j = 0.5. (d) The population
evolution of a three-level system for the initial condition
Y1 = (1, 0). Population inversion occurs at ¢ = ja/Qg,
where for a three-level system j = 1.
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suggested by Cook and Shore? as a generalization of the Rabi
solution, and further developed by Hioe for other schemes
of systems with SU(2) symmetry.’* This symmetry dictates
that the Hamiltonian of a ladder-connected N-level system lies
entirely in the subspace spanned by the three generators of the
SU(2) group. These are the angular momentum operators of
spinj = %(N — 1), which comply to the commutation relation
[Ji, 7] = idk. Thus the Hamiltonian is written as

(D

where c;(¢) are arbitrary functions of time and [ is the identity
matrix.

In this case, one could still apply specific pulses which
result in Rabi oscillations by considering specific time inde-
pendent couplings and detuning parameters between adjacent
levels, which do not have to be equidistant. Figure 1(a) depicts
an example of a general N-level coupled system with SU(2)
symmetry ¥, ¥, ..., Yy, which is dictated by a sequence
of Rabi frequencies Q, = Qyvn(N —n), where Qg is the
coupling between the first two levels which is a complex scal-
ing factor, and the detunings A, = nAy + Dy, where Dy is an
arbitrary real number.?’

Yet, all of the above solutions require the fine-tuning of
experimental parameters in order to achieve efficient pop-
ulation inversion between the ground state and the excited
state; this problem can be solved by employing compos-
ite pulse sequences. In this work, we expand the composite
pulses schemes developed for NMR and ultrashort temporal
pulses to the general case of an N-level system with SU(2)
symmetry.

In NMR, although a composite pulse scheme was derived
for a very specific case of an anharmonic three-level system,??
the lack of available solutions for multi-level systems has been
mentioned.'® It is in this setting that we introduce a general-
ization of the NMR spin inversion scheme to a spin j system,
displaying SU(2) symmetry. In such systems, this symmetry is
characterized by equal spacings between each level. This is not
the general case in atomic systems, which can portray SU(2)
symmetry without equidistant level spacings; therefore, these

H(1) = c1()Fy + c2(D)Fy + c3(H)F, + col,

Time in units of 7/Qr ’

schemes can be further applied to optical systems. Particularly,
we show that we can achieve robust population inversion via
ultrashort composite pulses between the first and the Nth level
of an N-level system with SU(2) symmetry. This is achieved
by employing the composite sequences derived by Torosov
et al.,”® particularly broadband (BB), narrowband (NB), and
passband (PB) excitation schemes. Furthermore, our approach
allows for precise control of the above processes in population
inversion between palindromic states, namely between levels
m and N — m + 1. These enable the controlled manipulation
of the dynamics of excitation processes in multi-level materi-
als, for the design of high fidelity infrastructure for quantum
information.

Last, we show that the evolution of the solutions to the
composite pulse schemes can be interpreted and visualized
as trajectories on a Majorana sphere,’3? the only means
available today to compactly visualize N-level dynamics with
SU(2) symmetry on a unit sphere. This representation pro-
vides a useful tool to feasibly portray the temporal evolution
of many-level dynamics. It will allow to gain insight on high-
dimensional or many-body systems, such as quantum entan-
glement in multiqubit systems,>>3* spinor boson gases,>>3
and geometric phases in many-body systems.>’—3°

The paper is organized as follows. In Sec. II, we introduce
pulse-induced coherent dynamics of a multi-level system and
formulate NMR and ultrashort pulse sequences for N-level
systems. In Sec. III, we employ the Majorana representation
to geometrically depict these dynamics. Section I'V provides a
brief discussion and summary.

Il. COMPOSITE PULSE SCHEMES FOR POPULATION
INVERSION IN N-LEVEL SYSTEMS

We start by describing the coherent dynamics of an N-level
system, shown in Fig. 1(a), by a time dependent Schrodinger

equation, where the probability amplitude for the nth level
j53:29:40

d o
i—Un(0) = Zl Hur (00 (1. @)
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In the case where N = 2, the Hamiltonian in the rotating-
wave-approximation (RWA), in which the applied field inten-
sity is low and near resonance, is

h 0 Q(t)e" P
H= 2 lQ* (e ( )0 , 3
where Q(r) is the Rabi frequency for electric dipole transi-
tions and the detuning between the laser carrier frequency
and the energy gap in a two-level system is described by
D) = f,f A(t)dt', A = wg — w, in which w denotes the laser
carrier frequency and wg = (E3 — E )/ is the Bohr transition
frequency between the two levels.

The propagator describing the SU(2) dynamics of the
two-level system is U= ft,’ exp [iH (t')t']dt’, such that y(t;)
= ljzp(ti). Thus, for the special case of resonant lossless exci-
tation, i.e., A = 0, one could define the area of a pulse as
A = t:)f Q(t")dt’. A single rectangular shaped pulse of area
A = nr, shown as the continuous line in Fig. 1(b), will lead
to the commonly-known Rabi oscillations between the two
levels, as shown in Fig. 1(c). The propagator describing the
evolution of the above system excited by a sequence of M
pulses with areas A, and phases ¢ is given by the product
Uy = U¢,f (A,f) . U¢,,. (A;) (see Appendix A).

We first show that the description of a propagator spec-
ifying M pulses can immediately be extended to an N-level
system with SU(2) dynamics, described by the Hamiltonian
given in Eq. (1), where J; are presented in their N X N form.
In the case of interest where the RWA is applied and the cou-
plings are non-vanishing only between adjacent levels, we can
write ¢i1(t) = Re{Q(t)}, co(t) = Im{Q(t)}, c3(t) = A(r) and
co(t) = 0. Thus for a sequence of M pulses with a constant area
A and phases ¢, where k = 1, ..., M, the Rabi frequency for
step k is Qi(f) = Ae™'%, and the system evolves into a final
state as y(tr) = e’ ey (1)), where the Hamiltonian
is described by the irreducible representation of an N-level
system with SU(2) symmetry:

Hi (1) = Re {Qu (1)} & + Im {Q (1)} Ty + A(2). “)

We recall that in order to achieve population inversion in
a two-level system, one must apply a so-called 7 pulse on the
system. Namely, one must ensure that % = Qpt where 6 = 7.
In our generalization to the N-level case, by applying a single
7 pulse, the population will flow from level 1 to level N in
a characteristic time we refer to as the “population inversion
time” T = n/Qg. Figure 1(d) is an example of such Rabi oscil-
lations for an N = 3 level system. Note a twofold increase in
the typical time for population inversion between the two and
three level systems. This is consistent with the fact that the
time for population inversion is proportional to the respective
spin value j multiplied by the number of pulses M impinged
on the system, 7 = jMn/Qg, where in the simplest case,
M=1.

However, a single pulse does not account for imperfec-
tions of a quantum system due to spatial inhomogeneity or
a resonance offset. Moreover, a temporally inaccurate single
pulse will not suffice to excite such a system. Such prob-
lems were at the origin of the emergence of the composite

J. Chem. Phys. 148, 074101 (2018)

pulse as a possible solution. In the following, we will present
our explicit expansion of composite pulse sequences derived
for spin inversion in NMR via radiofrequency pulses and
sequences derived for ultrashort Gaussian temporal shaped
pulses to the general case of N-level systems with SU(2)
symmetry.

The field of nuclear magnetic resonance spectroscopy has
traditionally been considered the first to popularize composite
pulses. Spin echo pulse sequences that compensate for static
field inhomogeniety were initially used to achieve spin pop-
ulation inversion via radiofrequency (rf) pulses. This scheme
was further expanded and improved by Levitt ez al.'® to com-
pensate for inhomogeneous single pulses and detuning effects
of a spin % system. Thus, three ingredient rf pulses of arbi-
trary inaccurate shape performed consecutively on a two-level
spin % system, result in a robust population inversion. This
is known as the NMR spin population inversion composite
scheme.

In order to generalize Levitt’s'® NMR spin % population
inversion composite pulse to a three-level spin j = 1 system,
we choose

AT1 = % ¢T1 = 0,
AT2 =r ¢T2 = %’ (5)
Ay =7 ¢z, = 0.

We find that by exciting the ground state of this sys-
tem, the inversion is between the first and third states, and
each pulse should be applied for a duration of 7; = 7/Qp,
as seen in Fig. 2(a). The total population inversion time is
7 = 371/Qp, consistent with the notion that T = Mjr/Qg, where
M is the total number of ingredient pulses in the composite
scheme.

Figures 2(b) and 2(c) are examples of complete popu-
lation inversion in three-level spin j = 1 and five-level spin
J =2 systems, compensated by the above composite sequence
for pulse area inaccuracies of A = m + &, where ¢ = 7/30.
Over 99% fidelity is achieved in both cases. To compare for
6 = /10, over 96% fidelity is measured at the expected time
of complete population inversion. A few examples of transi-
tion probability profiles for full spin population inversion as
a function of deviations from the pulse area in units of 7 are
shown in Fig. 2(e) for two-level spin j = % (black), three-level
j =1 (red), five-level j = 2 (blue), and nine-level j = 4 (green)
systems.

Furthermore, by varying the initial conditions of the sys-
tem, one could achieve robust spin inversion between any
two palindromic states, namely between levels m & m’ = N
— m + 1. To demonstrate this, we calculated the dynamics of
a five-level spin j = 2 system exposed to the NMR spin inver-
sion composite pulse, set at ¥(r = 0) = ¥,. In Fig. 2(d), one
sees that an efficient inversion occurs between the 2nd and 4th
states, along a population inversion time of T = 67/Qg, equiv-
alent to the coherence time of the same system set at the initial
condition of ¥(0) = ¥, seen in Fig. 2(c).

While Levitt’s composite scheme has made a huge impact
in NMR, and consequentially in MRI, its nature is inadequate
for the excitation of dynamics in other two-level systems. An
example of these include optical systems, controlled by ultra-
short pulses, which are more prone to inaccuracies in pulse
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FIG. 2. NMR population inversion scheme in N-level
systems. (a) Population inversion plot for three-level spin
J = 5 system excited by a completely accurate 7 pulse
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(6 = 0). (b) Same system with § = 7/30. (c) Popula-
tion inversion plot for five-level spin j = 2 system with
6§ = n/30. (d) Population inversion of palindromic levels.
Here, ¥(0) = ¥, with 6 = 0. (e) Transition probability
for full spin population inversion as a function of devia-
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area due to their smooth temporal shape. A comparison of a
rectangular radiofrequency and a Gaussian ultrashort tempo-
ral pulse shape is shown in Fig. 1(b). The rectangular temporal
shaped pulse can accurately be designed with a pulse area of
n, while for the ultrashort Gaussian pulse, this conveys a chal-
lenge. For this reason, Torosov et al.>*?! designed a series of
composite pulse sequences to accurately achieve an arbitrarily
flat inversion profile by tailoring the phases of the ingredient
pulses. Thus, a broadband (BB) pulse scheme?” for a two-level
system is achieved by introducing such a composite sequence
in which a flat top of the excitation profile is required at a
pulse area of A = &. Alternatively, one could require a flat
bottom of the excitation profile at pulse area A = 0 in order
to achieve narrowband (NB) pulses,”’ or both a flat top at
A = 1 and a flat bottom at A = 0 to achieve a passband (PB)
pulse.??

We now expand the composite pulse sequences for smooth
temporal pulse shapes®” to N-level systems with SU(2) sym-
metry, and achieve complete population inversion between
levels 1 and N excited by an ill-defined ultrashort 7 pulse
[see Fig. 1(b)]. We find that the number of pulses M dic-
tates the achieved fidelity of the excited state. This can be
shown in Fig. 3(a) in which a three-level system is excited
with a single n pulse with an inaccuracy of 6 = 0.3x.
Figure 3(b) shows the same system, excited by M =5 com-
posite pulses for broadband inversion. The system is fully
steered to the excited state by a population inversion time
of T = 57/Qg. This pulse sequence also proves useful for
higher order systems, such as the five-level system shown
in Figs. 3(c) and 3(d). This time, a longer composite pulse
sequence is necessary in order to achieve complete population
inversion.
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In order to present the fidelity of population inversion in
N-level systems, in Fig. 4, we calculated the transition proba-
bility to the desired excited level as a function of the different
pulse areas in units of &. Figures 4(a) and 4(b) show the transi-
tion probabilities for a broadband composite pulse sequence
comprised of M =5 and M = 15 pulses, respectively, for a
two-level (in blue), three-level (red), five-level (yellow), and
nine-level (purple) system. Note that the fidelity broadens for
larger values of ingredient pulses M and for smaller values of

levels N.

Figure 4(c) shows the transition probabilities for a nar-
rowband composite pulse sequence
pulses for several N-level systems. It is noticeable that in
this case, the fidelity is narrower for larger values of N.
In Fig. 4(d), we calculated the transition probabilities as
a function of the pulse area for several N-level systems,
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FIG. 3. Broadband (BB) population inversion scheme in
N-level systems. (a) Three-level system exposed to single
pulse of inaccurate area A = 7t + 0.37. (b) Same system
exposed to M = 5 BB composite pulses results in full
population inversion from state 1 to state 3. (c) Five-level
system exposed to single pulse of inaccurate area A = 7t +
0.4r. (d) Same system exposed to M = 15 BB composite
pulses results in full population inversion from state 1 to
state 5.

given a passband excitation of M = 7 composite pulses.?”
Here, the fidelity of the passband excitation scheme narrows
and sharpens for larger values of N. We refer the reader
to Appendix B for a discussion on palindromic population
inversion in this case, where we present examples of vari-
ous N-level systems accurately steered from level m to level
m =N-m+1.

This generalization of composite ultrashort pulses in the
broad framework of expanding these pulse schemes for N-level

systems with SU(2) symmetry is suitable for the coherent exci-

BB, M =15
0
0 0.5 R 15 2
Pulse Area (in units of 7)
. PB,M=7
% 0.5 1 15 2
Pulse Area (in units of 7)

tation of optical systems, in which the level spacing does not
have to be equidistant. The ability to prepare quantum states
with high fidelity will be very useful for quantum informa-
tion processing, robust state preparation in cooling schemes,
and efficient coherent manipulation of atomic and molecular
quantum systems.

FIG. 4. Transition probabilities for composite pulse
sequences in N-level systems. (a) Transition probabili-
ties for M =5 broadband (BB) composite sequences as a
function of the area of the pulses for a two-level (black),
three-level (red), five-level (blue), and nine-level (green)
system. (b) Transition probabilities for M = 15 broadband
composite sequences as a function of the area of the pulses
for the same N-level systems as (). (¢) Transition proba-
bilities for M = 5 narrowband (NB) composite sequences
as a function of the area of the pulses for N-level systems.
(d) Transition probabilities for M =7 passband (PB) com-
posite sequences as a function of the area of the pulses
for N-level systems.
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lll. MAJORANA REPRESENTATION OF COMPOSITE
PULSES IN N-LEVEL SYSTEMS WITH SU(2)
SYMMETRY AS POINTS ON THE BLOCH SPHERE

The geometric interpretation of the dynamics in N-level
systems is desirable in order to gain insight on these quantum
states. The Majorana representation provides an elegant and
compact means of portraying the evolution of an N-level sys-
tem with SU(2) symmetry on a unit sphere. Here, we use this
description to display the time evolution of an N-level system,
as a Bloch sphere has traditionally been used to represent the
dynamics of a two-level system. 4142

Without loss of generality, in the Bloch sphere repre-
sentation, each spin % equivalent state can be written as
ly )= cos§| L)+ e?sing| 1), where § € [0, n] and
¢ € [0, 2r]. It is easily seen that the basis vectors correspond
to the North and South poles of a unit sphere. Thus, the Rabi

() NMR: j=1 Three-level System

J. Chem. Phys. 148, 074101 (2018)

oscillations presented as solid lines in Fig. 1(c) are conve-
niently described by a complete circular trajectory on a unit
sphere. This geometric description was extended by E. Majo-
rana’!*? to describe higher order dynamics. In this repre-
sentation, a spin S state is described by 2§ points on a unit
sphere, each representing spin % particles, coupled, so their
total spin equals S. We employ the Majorana representation to
visualize the coherent dynamics of an N-level system, driven
by the composite pulse schemes introduced in Sec. II, in the
temporal domain. A comprehensive derivation is available in
Appendix C, with an example of composite pulse dynamics of
a three-level system in Appendix D.

Imposing the Hamiltonian given by Eq. (4) on the initial
state 1) = (1, 0, 0) results in two Majorana points with trajecto-
ries similar to the single point on a Bloch sphere, representing
the dynamics of a two-level system. In the three-level case, the
two points begin on the North pole of the Majorana sphere and

—
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FIG. 5. Majorana representation of composite pulses
in N-level systems. (I) Trajectories of two overlapping
Majorana points of a three-level spin j = 1 system for
various pulse area inaccuracies: 6 = 0 (blue), 6 = 7/30
(black), & = n/15 (red), and § = n/10 (green). (I) (a)
Broadband excitation of N = 3 level system by M =5
composite pulses, where i (t = 0) =I1). The two Majorana
overlapping points (blue and red) begin their trajectories
on the North pole and evolve to the South pole according
to the five trajectories shown in the following sub-figures.
(b) Overlapping trajectories of the two Majorana points
(MP) during the first of five composite pulses, beginning
their motion at the North pole, indicated by a black dot
in the figure. [(c)—(f)] Trajectories of the MPs during the
second, third, fourth, and fifth of five composite pulses,
respectively.
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perform a full rotation around its ¥ axis. For the initial state |2)
= (0, 1, 0), the trajectories of both points are complimentary,
namely, one point begins its trajectory on the North pole and
the other on the South pole.

The Majorana representation of the NMR composite pulse
sequence for a general spin j population inversion is shown in
Fig. 5(), for the case of a three-level spin j = 1 system, with
the initial condition of W(¢r = 0) = I1). This initial condition
results in two overlapping Majorana points, which begin their
trajectories at the North pole of the sphere. We show the time
evolution of the different trajectories for the system, exposed
to the NMR spin inversion pulse, for different pulse shape
inaccuracies, from 6 = 0 to § = n/10, in the supplementary
material. We also show how the initial condition of ¥(0) = ¥,
results in two complementary trajectories of the two Majorana
points.

The various ultrashort composite pulses sequences acting
on a three level system also result in informative trajectories on
the Majorana sphere, as seen in Fig. 5(I). A broadband com-
posite sequence of M =5 ingredient pulses, shown in Fig. 5(a)
creates two overlapping Majorana points that quickly begin
to move from their initial position on the North pole of the
unit sphere, along a counter-clockwise direction. The different
trajectories of the Majorana points for each of the 5 ingredi-
ent pulses are shown in Figs. 5(b)-5(f) (see supplementary
material for the time evolution of these representations). Here,
one sees how the three-level system is efficiently steered step-
wise from its initial state at the North pole to its final state at
the South pole of the Majorana sphere.

This visualization clearly shows the benefits of composite
pulses in N-level systems with SU(2) symmetry. Trajectories
that do not reach the South pole translate to states with lower
fidelity. Composite pulse schemes enable complete popula-
tion inversion, even between palindromic states, seen in the
supplementary material.

IV. CONCLUSION

In conclusion, in this work we analytically expanded
composite pulse schemes to N-level systems with SU(2) sym-
metry, allowing for accurate and robust customized popu-
lation transfer. We generalized the commonly used NMR
spin inversion scheme for the spin j case. This allows one
to apply to an N-level system any composite scheme from
the rich variety of sequences developed for radio frequency
excitation of two-level systems. Additionally, we have shown
that ultrashort composite pulses, and specifically the broad-
band, narrowband, and passband solutions? can be utilized
in multi-level systems, described within the dynamics of the
irreducible SU(2) model. Our method enables the coherent
control of dynamics in physical multi-level systems, with-
out imposing the approximation to a two-level solution. We
have also shown a geometric representation of the compos-
ite pulse evolution of SU(2) symmetric N-level systems on
the Majorana sphere. This description is advantageous, as it
provides a feasible, intuitive means to grasp complex dynam-
ics in multi-dimensional Hilbert space. We believe that this
expansion of composite pulse schemes, along with such intu-
itive visualization, will lead to new findings and possibly new

J. Chem. Phys. 148, 074101 (2018)

solutions for coherent control of complicated higher order
systems.

SUPPLEMENTARY MATERIAL

See supplementary material for three movies of the Majo-
rana representation of composite pulses in three-level systems:
(1) NMR composite pulse for spin inversion of a j = 1 three-
level system for different values of pulse inaccuracy A. (2)
NMR composite pulse for spin inversion of the same sys-
tem, with the initial condition ¢ (¢ = 0) = ¥, where the pulse
inaccuracy is A = n/15. (3) Three-level system population
inversion via five broadband composite pulses, in which the
pulse inaccuracy value is A = 0.37.
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APPENDIX A: COHERENT DYNAMICS
OF N-LEVEL SYSTEMS

The propagator describing the evolution of a two-level
system can be simplified and parametrized in terms of complex
Cayley-Klein parameters®® with a constant phase shift in the
Rabi frequency,

Us(Ap) = ( ‘. be"p) (A1)
—b*e'? a )’
where in the case of time-independent coupling,
a = cos (lQRt) - iA sin (%QRt)
2 Qg (A2)
b= i& sin (lQRt)
Qr 2
and
Qg = /A2 + Q) (A3)
Qp = Ae™.

In the case of an exact resonance (A = 0), the Cayley-Klein
parameters depend only on the pulse area U = U(A).

Now, we can expand this to the SU(2) symmetric N-level
case. Since H(?) is given by Eq. (4), for different values of f,
the vectors representing the N states of an N-level system are
transformed among themselves by the transformations of the
SU(2) group. This means that if one finds the set of parameters
a(t), b(t) for the two-level case, an immediate solution to the
Schrodinger Eq. (2) is found from the N = 2j + 1 representation
of the unitary group DV/[a(t), b(1)],

J
W@ =" DY la(®), b1H)] CO),

(A4)
m'=—j
where m =—j,—j + 1, .. ., j, and the matrix elements are given
253043
p?, =Y VG=m)IG+m)G=m)I G +m")!
' T plqlr!s!
xa’a b (=b")". (AS)
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Here,p=j-m-pyu,qg=j+m'—-u,r=p,ands=m-m’ + u
and C}Z?(O) is the initial condition vector of the system.

Thus, in our notation, a spin j system is interchangeable
with an N-level system of this representation, with SU(2) sym-
metry. For example, for aj =1 three-level system, the matrix is

a? V2ab b?
DY=V(a,b) = | -V2ab* |al® - |b* V2a'b|.
_b*Z _\/za*b* a*Z
It is important to stress that there are a number of

solutions for the coherent dynamics of such systems with
non-equidistant level spacings.?’

(AO6)

APPENDIX B: PALINDROMIC POPULATION
INVERSION IN N-LEVEL SYSTEMS VIA BROADBAND
ULTRASHORT COMPOSITE PULSES

Taking advantage of the unique property of palindromic
excitation of N-level systems with SU(2) symmetry, we calcu-
lated the evolution of several such systems exposed to a broad-
band composite pulse scheme?® with different initial condi-
tions. Figure 6(a) shows a three-level system excited by M =5
ingredient pulses, with the initial condition of /(0) = ». The
system remains in this state, as it is its own palindromic coun-
terpart. Figure 6(b) is a five-level system excited by the same
broadband composite pulse sequence, with the initial condi-
tion of (0) = y,. This time, the system evolves into the final
state /4. Figures 6(c) and 6(d) present the evolution of a nine-
level system excited by a broadband composite sequence of
M = 15 pulses, with the initial conditions ¢, and 3, which
evolve into the final states /g and 7 respectively.

APPENDIX C: THE MAJORANA REPRESENTATION

The basis for the spin states of a spin-S particle is given as
IS,M), M =-S,...,+S,

thus an arbitrary pure spin state can be written as |&)
= Zzsu:—s ém|S, M), where &) is a complex number for
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each M. We define the spin § state as a symmetrized tensor
product of spin % states, |£) = & >p ®£i 1Pk, with compo-
nents given by ¢r = | T)Q/I + Bkl l)ﬁ’], where k =1, ..., 28,
and where P are the permutations of the signs T and |.

To obtain the spin % vectors, if |§) is known, one must
define the Majorana polynomial®'!

_ N 28 1/2 _
Pyajo (16):x) = ), (S+M) &M (CD)

M=-S

Here, we denote a spin S system by 2S5 decimal numbers,
such that

28
lida = ) 18,5 =$), (C2)

=0
wherei=0, 1,2, ...,2S. Given a state vector of a spin § system

¢ = Ziz:SO Cili),, where C; is the weight of each of the 25 states
li)4, the corresponding Majorana polynomial becomes

25 h\12
Pprajo (¢;x) = ZO: ( ; ) Cix'. (C3)
=
Using the roots of the Majorana polynomial, every spin S

state can be mapped as 2§ points on the Bloch sphere,*?
namely,

X = tan %eiq’k, (C4)

where 6y, ¢ are the angular coordinates on a sphere. In
Eq. (C4), one can see that x; = — B/, thus @ =0 corresponds
to Oy =m.

It can be shown>? that if the Majorana polynomial defined
as in Eq. (C1) is a rotation of the spin vector |£) by a spin rota-
tion matrix D (a, B, y), this corresponds to rotating the point
configuration of 1£) by R («, 8,v) € SO (3), parametrized by
the Euler angles.

Therefore, applying the Hamiltonian given by Eq. (4)
on an N-level system acts as a rotation of all the Majorana
points on the sphere. Thus, the trajectory of these points is

FIG. 6. Palindromic population inversion in N-level sys-
tems via broadband composite pulses. (a) Population
evolution of a three-level system with the initial condi-

(@) N=3 (b), N=5
—_~ —_~

S 0512 25 )2 4
5 8

c 06 c 06

je] ie)

*(B' 0.4 "(B' 0.4

=] S

0 02 O 02

(@) O

o 0 o 0

1 2 3 4 5
Time in units of 7/r

2 4 6 8 1
Time in units of 7/Qr

0 tion (0) = ¢, excited by M = 5 broadband composite
pulses. (b) Five-level system excited by M = 5 broadband
composite pulses, with the initial condition ¢(0) = ¢5. (¢)

(o), (d),
Sos > o8
8 8

c 0. c 06
ie} o

To T 04
> >

Qo. o o2l
O e}

o LWl o

20 40
Time in units of 7/Qr

0 20 a0
Time in units of 7/Qr

Nine-level system excited by M = 15 broadband compos-
ite pulses, with the initial condition ¢(0) = ¢,. (d) Same
system and excitation as (c), with the initial condition

¥(0) =y3.

60
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interpreted as the temporal evolution of the multi-level system
dynamics.

APPENDIX D: EXAMPLE OF MAJORANA
REPRESENTATION FOR COMPOSITE PULSE
DYNAMICS IN A THREE-LEVEL SYSTEM

In the following we will demonstrate this visualization
procedure for composite pulse dynamics in a three-level sys-
tem. Consider a three level spin 1 system composed of three
states: [1) =11, -1) = (1, 0, 0), 12) =11, 0) = (0, 1, 0) and 13)
=I1,1)=(0,0, 1), with dynamics described by the Hamiltonian
given by Eq. (4). This time,

010
A T
H=—|1 0 1 (D1)
‘5010

The eigenvalues and eigenvectors of this Hamiltonian
AV =V D are

10 0 11 -2 1
D:nOOOsz—\/E 0 V2.
0 0 1 1 V2 o1

We use the Majorana representation to describe these
eigenvectors in terms of those of a two level system, com-
pletely represented by the basis of two eigenstates |T) and
|L). One could define the symmetric (S) and antisymmetic (A)
states for each spin 1/2,

[ T+ 11
Sy = AT
> V2
[T)i—1L1) 2
Ay = i b
|A); NG

where for a spin S system, i =1, ..., 25 and in the case where
S=1,i=1,2.

Recalling that the state vector of a two-level system
on the Bloch sphere can be described by |y¥) = cos g [T
+¢'® sin % |1), we now extend this to the N-level case. By cal-
culating the roots of the Majorana polynomial in Eq. (C3) for

the different eigenvectors T/) we find the values of (6;, ¢;) for
the 25 = 2 points on the Majorana sphere, thus enabling a con-
venient representation of the spin 1 system in the basis of two
spin 1/2 states,

Ua = IS +15),.,

U= 1)1 +1A4), (D3)
vy = AN +1A).

Now, we can describe the different levels of a spin 1 system
in terms of these eigenvectors,
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=3 (@ +3 - V2),
12) = V2 (0y - ).
13y = %(E+Fy’+\/§@’).

(D4)
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We introduce a control method for off-resonant robust quantum information processing suited for quantum
integrated photonics. We utilize detunings as control parameters to derive a family of composite pulses for
high-fidelity complete population transfer. The presented detuning-modulated composite sequences can be
implemented within the decay lifetime of the qubit and correct for control inaccuracies in various parameters
including pulse strength, duration, detuning, phase jitter, Stark shift, and unwanted frequency chirps. We
implement the proposed robust sequences in an integrated photonics platform to achieve complete light transfer

insensitive to fabrication errors.

DOI: 10.1103/PhysRevA.100.032333

I. INTRODUCTION

Quantum information processing (QIP) relies on high-
fidelity quantum state preparation and transfer. This presents a
challenge in practical realizations of QIP where the admissible
error of quantum operations is smaller than 10~* [1]. Thus
small systematic errors due to imperfections in fabrication
or in the experimental control knobs reduce the fidelity of
state transfer below the fault-tolerant threshold. A powerful
tool to correct for systematic errors is composite pulses (CPs),
which were initially developed in the field of nuclear magnetic
resonance [2-9]. A composite pulse is a sequence of pulses
with different areas and/or phases that implement accurate
and robust quantum gates. To this end, CPs are designed
for resonant or adiabatic interactions with complex coupling
parameters [10-12] and were successfully used to achieve
complete population transfer (CPT) in quantum systems in
both rf and ultrashort pulses [13].

More recently, CPs found applications in matching higher
harmonic generation processes [14] and in designing polar-
ization rotators [15,16], as well as in QIP realizations in-
cluding trapped ions [17] and atomic systems [18,19]. An-
other promising candidate for advancing QIP technologies
is integrated photonic circuits due to their scalability and
on-chip integration capacity [20-22]. However, to date, the
gate fidelity remains below the QIP threshold due to unavoid-
able fabrication errors. CPs have not been previously used
to correct for such errors as existing CP sequences require
control of the phase of the coupling, whereas in integrated
photonic circuits it is a real parameter. The present research
is the first to address this limitation and to derive CPs that
can be used in any qubit architecture including integrated
photonics.

In this paper, we introduce the first composite sequences
designed for off-resonant robust qubit inversion. We realize

“elkyoseva@gmail.com

2469-9926/2019/100(3)/032333(6)
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the desired high-fidelity population transfer by suitably choos-
ing the detuning parameters while maintaining constant cou-
pling throughout the constituent pulses. The presented general
approach to derive detuning-modulated composite pulses of
an arbitrary length N has a minimal pulse overhead and
robust transfer is realized even for N = 2. In our analysis we
consider a generic qubit which has many physical realizations
including atomic and photonic systems (Fig. 1). We show
that our sequences are stable to inaccuracies in various sys-
tematic parameters—coupling strength, duration, phase jitter,
and resonance offsets—and achieve fidelities well above the
QIP gate error threshold within the temporal lifetime of the
system. Finally, we lay out the general recipe to implement
the presented detuning-modulated composite sequences in in-
tegrated photonic systems for broadband high fidelity optical
switching.

II. DETUNING-MODULATED COMPOSITE PULSES

The dynamics of a qubit {|1), |2)} driven coherently by an
external electromagnetic field [Fig. 1(a)] is governed by the

Schrodinger equation
Q(I)} I:Cl(t)]. 0
A1) [Lea (1)

, |:Cl(t)i| h[—A(t)
iho; ==
)] 21950

Here, [c;(t), c2(t)]" is the probability amplitudes vector, ()
is the Rabi frequency of the transition, and A(?) = (wyp — w)
is the real-valued detuning between the laser frequency w
and the Bohr transition frequency of the qubit wy. In what
follows, we assume (¢) and A(t) real and constant, which
is well suited for the foreseen implementation in coupled
waveguides and in optical elements for generating higher
harmonics. However, we note that our composite sequences
can also be implemented in physical systems with complex
Q).

©2019 American Physical Society
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FIG. 1. Coherent qubit dynamics. Qubit realization in (a) an
atomic system driven by a field with Rabi frequency €2 and detuning
A and in (b) coupled waveguides of widths w; and w; at a distance g.
(c) Population transfer fidelity as a function of detuning and coupling
errors. (d) Resonant Rabi oscillations. The permissible gate infidelity
is <1074,

The unitary propagator corresponding to Eq. (1) is found
according to U (¢, 0) = e~/ /o HW4dt and reads

cos (%‘) +ig sin (%) —iQg sin (%)
U((t) = 9 .”A A -
—igsin (%) cos (5) —lQ sin (%)

2)

Here, Q, = +/Q2 + A? is the generalized Rabi frequency and
A = Q,0t is the pulse area with §t = (¢ — #o) being the pulse
duration. The propagator U (6¢) evolves the state of the qubit
from the initial time #; to the final time ¢ according to ¢(t) =
U (8t)c(2p). If the initial state of the qubit at £, is |1), the popu-
lation of the excited state |2) at time ¢ is given by the modulus
squared of the off-diagonal propagator element |U;,(81)]?.
We assume the most general composite pulse sequence
comprising N individual off-resonant pulses with Rabi fre-
quencies €2, and detunings A,. Given the individual pulse
propagator U, (8t,) from Eq. (2), the propagator for the total
composite pulse sequence is expressed by the product

UN(T,0) = Uy(Sty) Uy—1(8ty—1) ... Ui(8t1),  (3)

where 8, = (t, — t,—1) is the duration of the nth pulse (fy =
0 and ty = T). Below, we focus on the case of ingredient &
pulses, i.e., A, = A = m, which is easily realized by setting
the pulse durations according to 81, = 7w //Q2 + A2.

A. General propagator matrix

We require that the composite sequence produces a prese-
lected single-qubit rotation 7 on the Bloch sphere at an angle

69
T — cos 6
" |—isin®
That is, at the end of the pulse sequence the propagator from
Eq. (3) should implement the target 7. The exact form of

—1i sin 9]. @

cos 6

the off-diagonal element of the composite propagator for an
arbitrary even N = 2n pulse sequence is given by

Q
U1, 0) = l‘[h Z( 1>l+1

A; A Ak
+ Z ( 1)l+]+k +.
i<j<k=1 Q Q Qk

2n

; A; A
o) L 5)
i<---<m=1 i mn
—_———
2n—1
while for an odd N = (2n + 1) pulse sequence by
2n+1 |Q | 2n+1
|U1(§"+1)(T 0)| _ 1_[ 1+ Z( 1)l+/+1
\% QZ + AZ i<j=l1
2n+1
A Aj A A
1 i+jrk+l T
+ l§< =D Q; Q Qk Q[
k<l=1
2n+1
) A; A
+ ) (= o ol ©
i<--<m=1 l_,_mz

2n

We require that U3 (T, 0) = | sin6].

B. Complete population transfer

Below we focus on providing the protocol for the deriva-
tion of composite sequences, which produce a robust complete
population inversion. The same protocol can be followed for
any other rotation angle 6 and we provide an example for
6 = /2 in the Appendix.

For target 6 = 7, we require that the modulus squared of
the off-diagonal element from Eq. (3) should be equal to 1,
|Ul(év )(T, 0)| = 1. To fulfill this condition we use the set of
detunings {A,} as free control parameters. We find that for
a complete population inversion they need to obey a general
analytical condition depending on the parity of N. For an even
N = 2n, the condition is

2n

’y
1+ Y (e Qj+~--

i<j=1

2n
. A; A
4 -1 iteetmt+l 7 Tm — 0’ 7
. Z ( ) Qi Qm ( )
i<---<m=1 ———
2n times
while for an odd N = (2n + 1) it reads
2n+1 2n+1
) A; Aj Ay
-1 1+1 1 i+j+k =1
21 + 2, e oo
i=1 i<j<k=1
2n+1
) A; A
+ -1 i+etm+l 7L —m —0. 8
. Z ( ) Qi Qm ( )
i<---<m=1 ———
(2n+1) times
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Note that the above Eq. (7) or (8), depending on the parity of
the composite pulse, is the only condition that the detuning
and coupling parameters need to fulfill in order to realize a
population inversion in the system.

The next step in our protocol is to find which subset of
the solutions to Egs. (7) and (8) produce an excitation profile
that is maximally robust to variations in the pulse area A
at selected value(s) of A. This is achieved mathematically
by nullifying the even derivatives of the propagator element
3Ak |U1(§V)(T, O)|2 at A = . Note that the odd derivatives are
always equal to zero. Thus for a first-order CP realizing
a robust composite sequence that corrects for imperfections
in the pulse area we need to nullify the second derivative,
while for a second-order CP—the second and the fourth
derivatives simultaneously. Note, that in contrast to previous
works [10,11,18], the pulse area A for an off-resonant pulse
is a function of all systematic parameters—pulse duration,
amplitude, and detuning—and thus the detuning-modulated
composite pulses presented here are robust against various
systematic errors.

C. First-order composite pulses: Sign-alternating As

In the following we provide analytical solutions for broad-
band pulse sequences of arbitrary lengths N. In order to obtain
the elegant analytical solutions for arbitrary N presented
below we assume that the detuning and coupling parameters
values are not completely arbitrary but they have equal ratios
|Q | = |Qf| Vi, j. The uncovered pulse symmetries represent
a powerful analytical quantum control tool and allow for
finding sequences of arbitrary lengths in a straightforward
manner. The presented sequences will be straightforward to
realize in NMR and in coupled waveguide qubits.

Our first-order composite pulse parameters are antisym-

metric along their length, i.e., % =— ’*‘ =¢ for i=
(a,.. — 1). The rationale behind this is that the composite

sequence needs to produce a change in the path of the state
vector on the Bloch sphere (see the inset of Fig. 5). Then,
the CPT conditions Egs. (7) and (8) can be rewritten as the
polynomial

n N
(—1)5< )sH‘ =0, )
; N —2s

which is valid for both even N =2n and odd N = 2n+ 1)
sequences. The roots of this polynomial provide the values
of § for which a complete population transfer is achieved
and moreover W|U1(év)| at A = 7 is nullified. For a flat-
top broadband composite sequence we choose the root that
minimizes the fourth derivative W|U1(§V )| at A= (the
polynomial is a symmetric function of £). Finally, we find that
first-order detuning-modulated CPs of length N are realized
for 6 equal to the largest (in absolute value) root of the
polynomial Eq. (9). In Table I we present the first several

examples for CPs.

D. Second-order composite pulses: Antisymmetric As

Second-order CPs are of odd pulse length, N = (2n + 1),
and similar to the first-order ones the ratios of the detunings

TABLE I. First-order detuning-modulated CPs.

N (g &)

2 (I, =1

3 (1,-1,1)+/3

4 1, -1,1, =) (2+1)

and couplings are equal and antisymmetric with respect to
the length of the pulse. That is, %{ ézﬂ © = &, while the
detuning of the middle pulse is A,1; = 0. This antisymmetric
arrangement fulfills the CPT condition Eq. (8) automatically
and the second derivative is zero as it is proportional to
the diagonal element of the propagator. To achieve a higher
ﬁdelity of the CPs we need to also nullify the fourth derivative
(W |U(N)(T, O)|2 at A = 7 and minimize the sixth. This task is
simple numerically and in Table II we present a few examples
of second-order CPs, which can easily be extended to large
odd N.

The above presented approach of tailoring the propagator
element and its derivatives to achieve robustness against sys-
tematic parameters can be extended to implement other gates,
i.e., create equal superposition between the states. In this case
the propagator elements squared from (7) and (8) should be
equal to 1/2 and the derivatives with respect to any chosen
systematic parameter should be nullified accordingly.

III. ROBUSTNESS OF THE DETUNING-MODULATED
SEQUENCES

A. Pulse area errors and phase jitter

The infidelities of the first- and second-order composite
sequences as a function of errors in the target pulse area are
shown in Fig. 2. For easy reference, we include the fidelity of
a resonant pulse and the QI gate error threshold [1]. Note that
the infidelity of the population transfer is well below the QI
benchmark even for §A /A larger than 10% as compared to less
than 1% for a resonant excitation. We achieve approximately
an order of magnitude improvement in the error tolerance
by adding a single pulse (first-order CP) and 1.5 orders of
magnitude by adding two extra pulses (second-order CP). The
pulse overhead scales as N, which is significantly better than
that of previous proposals (2N) [10-12]. In our analysis we
also allowed for Gaussian errors of 10% in the individual
pulse areas and averaged over 100 times (with dashed curves).
Note that any other first- and second-order pulses have similar
robustness to the ones we show here as they nullify up
to the same derivative of the propagator element and, for
compactness, we have omitted them. Finally, we relaxed the
assumption of real couplings 2 and allowed for a random

TABLE II. Second-order detuning-modulated CPs.

A A An_ A
N H(A, 82,0, gt A
3 (1,0, —1)2.5425
5 (1,—1,0,1, —1)5.09027
7 (1,-1,1,0,—1,1, —1)7.6375
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FIG. 2. Infidelity of the shortest first- (red) and second-order
(blue) CPs vs area errors with (dashed curves) and without (solid
curves) Gaussian noise of 10% in A averaged over 100 times. The
point-dash blue curve shows the second-order pulse with a random
phase error of 1%. The black curve shows the infidelity of a single
resonant pulse and we also show the 10~ QIP infidelity threshold.

phase jitter of 1% in the second-order pulse (dashed blue). We
note that the error correction of our CPs is largely unaffected
by such inaccuracies.

B. Detuning and coupling errors

We further examine the robustness of the detuning-
modulated composite sequences in the presence of simulta-
neous detuning and coupling errors and show the population
transfer fidelity in Fig. 3(a). We present the contour plots of
the fidelity of the first-order (left) and second-order (right)
CPs of length N = 2 and 3, respectively. Note that the con-
tour plots for any other pulses from their respective families
look similar. The area where the fidelity is above 90% is
increased significantly as compared to that of a resonant pulse
[Fig. 1(c)]. We also identify areas in the parameter space
where the fidelity exhibits a notable stability against either
detuning 8 A;/A; or coupling §€2/<2 errors and mark them by
horizontal and vertical cut lines in the contour plots. We zoom
in on them in Figs. 3(b) and 3(c) and observe an increased
robustness vs detuning and coupling errors.

C. In the presence of relaxation

As composite sequences require longer implementation
times, it is important to test their fidelity against the lifetime
of the system. Given relaxation, we substitute A — (A —iy)
in the diagonal elements of the Hamiltonian (1), and find the
probability amplitude of each state according to |c;(¢)[>e~7"/?,
where the relaxation time is 7; = y ~'. It is known that for free
decay 7 is independent of 75 and there is an upper limit to the
decoherence rate 7, < 27; [23,24]. We show the robustness
of the population transfer with respect to y in Fig. 4 where
we have used experimentally reported decoherence values
(Refs. [25-28]) to allow for y of the order of 2. The above
analysis shows that the detuning-modulated sequences are a
powerful tool for a robust qubit inversion even in the presence
of decay or decoherence and that their implementation time is
well within the decay time of the qubit.

IV. REALIZATION IN COUPLED WAVEGUIDES

The detuning-modulated CPs offer a unique solution to
overcome inaccuracies in fabrication in integrated photonic

(a) Ist order CPs

2nd order CPs

Coupling error §Q/Q

0
Individual detuning error dA;/A;
(b)

Infidelity, 1 - F/
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FIG. 3. Robustness of first- (left) and second-order (right)
detuning-modulated sequences vs detuning and coupling errors.
(a) Contour plots of the fidelity vs errors in both §A;/A; and §Q2/.
The error tolerance is increased significantly as compared to the
contour plot of a single resonant pulse, shown in Fig. 1(c). The
infidelity, 1 — F, along the horizontal (b) and vertical (c) cut lines
from the contour plots from (a), where first-order pulses are in red
and second-order pulses are represented with blue. For easy reference
we show the 10~* QIP infidelity threshold and the resonance pulse
infidelity with black.

circuits. In Fig. 1(b), we show two evanescently coupled
optical waveguides at a distance g measured from their cen-
ter lines. Within the coupled-mode approximation [29], the
amplitudes of the fundamental modes in the waveguides obey
an equation analogous to Eq. (1) where the coupling is 2 =
a e~%8 (a and b are material and geometry dependent). For con-
stant g, Q2 is also constant throughout the length. The system
is on resonance if the waveguides have identical geometries;
otherwise, there is a real-valued phase mismatch A = (8; —
B2)/2 with B, being the respective propagation constants.

53 10'2 E ;esona“‘ puise
- rdes puis©
~ 1030 4-0
Z‘. 10 ot \“\\sw
% 4 150
E 10 F~"~""""""""7 == == T T T T T T T T T T
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10 10 v/ 107 10

FIG. 4. Infidelity, 1 — F, in log scale vs the decay rate in units of
Q for N = 2 first- and N = 3 second-order composite sequences and
for a resonant pulse in red, blue, and black, respectively.
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FIG. 5. Complete light transfer in a first-order N = 2 detuning-
modulated composite waveguide coupler. (a) An out-of-scale
schematic of the waveguide design with EME calculation. Light is
initially injected in waveguide 1 and is then robustly transferred
to waveguide 2. (b) Light intensity of waveguide 1 (blue, initially
populated) and waveguide 2 (red, initially empty) vs normalized
propagation length. The inset shows the path of the system’s state
vector on the Bloch sphere during the evolution. (c) Fidelity of the
light transfer vs errors in (left) the propagation length L and (right)
the target phase mismatch A.

Thus our sequences can be implemented by changing the
waveguides’ widths such that there are step changes in A
along the length.

Figure 5(a) is an out-of-scale schematic of the N = 2 first-
order CP in coupled waveguides of length 2L. The width
of waveguide 1, wy, is fixed, while the width of waveguide
2 changes midlength from 1.034w; to 0.966w;, realizing
the required step change in A in Si on SiO; configuration.
By employing an eigenmode expansion (EME) solver, we
simulate the light propagation along the waveguides. We plot
the light intensities in Fig. 5(b) along with the Bloch sphere
path of the state vector. We realize a complete light switching
and test its robustness to errors in the phase mismatch §A/A
and in the propagation length §L/L, shown in Fig. 5(c). We
observe high fidelity light transfer in excellent agreement with
the theoretical calculations (Figs. 2 and 3). Finally, in Fig. 6

(a) (b)

Intensity

FIG. 6. (a) Light intensity as a function of normalized length of
two composite waveguide couplers: one with first-order design as
shown in (b) and one with second-order design as shown in (c). The
light intensity of the initially populated waveguides [with blue curves
in (a) starting from 1] is robustly transferred to the other waveguide
[with red curves in (a) starting from zero].

we show light switching for N = 3 composite waveguides
based on first- and second-order sequences.

V. CONCLUSIONS

We introduced a set of detuning-modulated composite
pulse sequences that are robust to inaccuracies in various sys-
tematic parameters including duration, coupling strength, and
off-resonance errors well within the system’s lifetime. The
control knobs, which we utilized to achieve broadband pop-
ulation transfer, are the detuning parameters of the constituent
pulses, while the coupling constants remain unchanged. We
achieved an inversion gate fidelity above the QI threshold vs
errors of several percents in the pulse area for a sequence of
only two constituent pulses and vs errors of over 10% for
three constituent pulses. The presented composite pulses are
radically different compared to existing composite sequences,
which assume complex coupling parameters and modify their
phases. Thus we believe that our analytical solutions will be
the cornerstone for quantum information protocols in practical
realization of high-fidelity quantum computing in integrated
photonic circuits.
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APPENDIX: COMPOSITE PULSE FOR A ROBUST
EQUAL SUPERPOSITION

An equal superposition between the two qubit states is
realized when the rotation angle from Eq. (4) 8 = 7 /2. We
focus on the shortest sequence with N = 2. Then, for the
off-diagonal composite propagator element from Eq. (5) we

have the condition
AL Ay

Uy = LI =—1/v2.
A+t /a4l

We solve this equation for one of the independent parameters,

(A1)

21 and find that it is satisfied for &L = o and &t =
Q) QT 14 QT

2

:222 . We substitute this solution into the second derivative
2

of |U1(§)|2 with respect to A at A = m and finds its roots. The
exact expression is too cumbersome to be explicitly included

here. Finally, we find the roots to be

A A
(‘, 2) = 4+(—5.52,0.69),
QL

—1+
1+

(A2)

which gives the interaction parameters of a two-pulse se-
quence that produces a robust equal superposition.
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Additional Work

4.1 Persistent Photoconductivity (PPC) in
LaAlO3/SrTiO;

Recent experimental observations [74, 75, 76] on optically enhanced coherent
transport in superconductors open the possibility of ultrafast light-induced supercon-
ductivity even at temperatures above the critical temperature for a superconducting
phase transition Tec. This has piqued my interest to combine our lab’s expertise in
ultrafast optical phenomena and near field optical nano-scaled measurements with
superconductors and other highly correlated electron materials. The research direc-
tions are related to the recently reported transient phase transition in Y BasCu3Og 5
superconductors [74], occurring at T<Tc , with a timescale of the order of 7ps,
due to a transient enhancement of the superfluid density of the superconductor.
Moreover, the same qualitative behavior was observed above Tc, meaning that the
photoinduced enhancement of the superfluid density persists, for temperatures of
up to room temperature 300K. This was supported by fitting experimental data by
the optical properties of a Drude metal. Similar results were reported for another
superconducting material Laq g75 Eug.2S570.125CuQy, for temperatures <20K [75].

These photoinduced dynamics were interpreted as a signature of an inhomogeneous
light-induced phase, in which only a fraction of the equilibrium superconducting
state is transformed. This is similar to the inhomogeneity found in the ultrafast
insulator-metal transition (IMT) of VO5 [77]. The timescales of this transition were
found to vary from 40-200fs, due to the sensitivity of the photoinduced IMT to
structural differences between different crystal areas, or a thermal transition, imaged
by a near-field scanning optical microscope (SNOM).

In this research, I aimed to bridge the gap between highly correlated electron
materials with ultrafast optics, and to introduce these materials into the field of
nanophotonics. Near field studies of photoinduced phase transitions and other
effects in these materials will allow to gain insight on the nature of these changes,
their locality, their timescales and their physical origins.

A wide range of physical phenomena, such as superconductivity, ferroelectricity
and electro-optic effects have been shown [78, 79, 80, 81, 82] in complex oxides,
such as Strontium Titanate (Sr7i0O3). SrTiOs is a wide-bandgap semiconductor
(3.25eV at room temperature), whose electronic properties can be tuned by electron
doping [83, 84]. Studies [85, 86, 87] report a strong temperature and electric field
dependence of its dielectric constant, thus it is considered a strong candidate for
oxide-based electronic devices [88, 89].
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Moreover, at room temperature, when exposed to sub-bandgap light (2.9eV or
higher), SrTiO3 exhibits a persistent photoinduced change of its conductivity, with
a twofold enhancement of free electron concentration, which maintains without
decay for several days [90]. At room temperature, this persistent photoconductivity
(PPC) can be attributed to oxygen vacancies created by annealing Sr7Ti0O3 samples at
1200°C for one hour [90]. The annealed samples were exposed to photon energies
ranging from 2-3eV, while the free-carrier absorption was measured in the far field.
A threshold for PPC was observed at 2.9eV (430nm). Macroscopic measurements of
the resistivity performed on these samples at A = 410nm, above the threshold for
PPC, conveyed a significant drop from 290€Q2cm before illumination to 0.6Q2cm after
it. The effect of exposing the annealed sample to sub-bandgap illumination can be
explained via two processes in a band diagram that takes into account the electron
conduction band and another band for the oxygen vacancies in the sample, i.e. a
defect band, seen in Figure 4.1(a). In the first process, by illuminating the sample,
a photon promotes an electron from the defect band to the conduction band. The
defect relaxes into a metastable configuration, and in process two, electron recapture
to the ground state can only occur if the electron has enough energy to overcome a
thermal barrier.

Chapter 4 Additional Work
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Fig. 4.1: Band diagrams of processes occurring in LaAlO3/SrTiO3 exposed to sub-bandgap
illumination. (a) Figure taken from [90]. Defect configuration-coordinate dia-
gram describing (1) excitation of electron into conduction band and (2) electron
recapture. (b) Figure taken from [76]. Schematic diagram of band structure at
the LaAlO3/SrTiO3 interface where the band bending is displayed.

4.1 Persistent Photoconductivity (PPC) in LaAlOs/SrTiO3
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4.1.1 Near Field Studies of PPC in LaAlO3/SrTiOs

The macroscopic phenomenon of persistent photoconductivity was more recently
reported [76] in LaAlO3/SrTiOs epitaxially grown oxide heterostructures. This
material has been at the focus of scientific attention since it was discovered that
a high-mobility two-dimensional electron gas (2DEG) appears at the interface of
the two bulk insulating materials as the LAO thickness crosses a threshold of four
unit cells [91]. This is popularly explained by a model, in which the polar sublayers
of LAO cause an electric potential build-up as its thickness increases. To prevent a
"polar catastrophe", a charge transfer of 0.5¢~ per unit cell is transferred from the
LAO layer to the LaAlO3/SrTiOs interface, therefore creating a 2DEG.

Many intriguing physical properties have since been exhibited by these heterostruc-
tures, such as superconductivity, negative magnetoresistance, Kondo effect, and a co-
existence of ferromagnetism and superconductivity. Persistent and transient photoin-
duced conductivity were measured at room temperature [76] in LaAlO3/SrTiO3 by
illuminating 10u.c. samples with 365nm (~ 3.3¢V"), which is between the bandgap
of LAO (5.6eV) and STO. In this scenario, shown in Figure 4.1(b) the light irradiates
the 2DEG interface at the STO side, and generates electron-hole pairs by passing
through the LAO layer. This results in an increase of the electron density in the
2DEG, where the excited electrons falling into the potential well at the interface on
the STO side are added into the 2DEG, and the holes are localized by small defects,
such perhaps as oxygen vacancies. When the illuminating light is turned off, the
trapped electrons in the 2DEG potential well do not recombine with holes due to the
energy barrier, thus the conduction will maintain its increased value.

High-energy optical reflectivity, coupled with spectroscopic ellipsometry measure-
ments have been performed on LaAlO3/SrTiO3 heterostructures under the conduc-
tion threshold [92] in order to gain a better understanding about the nature of the
phase transition. A surprising charge distribution of 0.5¢~ was observed within the
LAO layers even in the insulating case, with no charge transfer to the interface. This
may mean that even though macroscopically, the sample is still insulating, there may
be a localized free electron density, which reaches the threshold to cross the barrier
when the LAO layer is over 4u.c. thick.

Chapter 4 Additional Work
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Fig. 4.2: Near field measurements of LaAlOs/SrTiO3 heterostructures (I) (a) Scheme of
measured sample: amorphous BTO (in blue), LaAlO3/SrTiO3 heterostructure
(in red) and atomically flat STO (in green). Black frame around area of interest
- boundary between LaAlO3/SrTi0O3 and STO. (b) Mechanical signal (left) and
phase (right) of area of interest (c) Second harmonic of optical signal (left) and
phase (right) of area of interest. (d) Third harmonic of optical signal (left) and
phase (right) of area of interest. (II) (a) Black frame around second area of interest
- boundary between amorphous BTO and LaAlO3/SrTi0O3. (b) Mechanical signal
(left) and phase (right) of area of interest (c) Second harmonic of optical signal
(left) and phase (right) of area of interest. (d) Third harmonic of optical signal
(left) and phase (right) of area of interest.

4.1.2 Experimental Setup of PPC Measurements

As the initial research question of interest was whether the phenomenon of PPC in
LaAlO3/SrTiO3 heterostructures is local or of a carrier transporting nature, it was
important to create a clear boundary between illuminated and non-illuminated areas
of the samples. This was a challenging task, as any visible mechanical creation of a
boundary, such as a scratch or a nanofabricated marker, causes significant debris on
the surface of the sample, which is a scattering source that affects the measurements.
Figure 4.2(I) shows both the mechanical and near-field optical signals obtained simul-
taneously, by measuring the boundary between two insulating materials: amorphous-
BTO and atomically flat STO (Figure 4.2(Ia)). These scans are 10 x 10um in size,
with a 150 x 150 pixel area and show the mechanical signal and phase (b), and the
second and third harmonics of the optical signal (c) and (d). The optical signal
at the higher harmonics is the pure near-field signal, yet we are not certain of its
physical origin. To compare, we measured the boundary between amorphous-BTO
and and LaAlO3/SrTiO3 heterolayer, shown in Figure 4.2(II). Here, the mechanical
signal shows that the boundary is not smooth, and debris appears on the conducting
side of the sample. This perhaps creates scattering sources which result in a stronger
interference pattern shown in the third harmonic of the optical signal. We note that
these measurements were performed with a A = 633nm near-field probe.

I performed SNOM measurements on 4-10u.c. samples of LaAlO3/SrTiO3 before
illumination, and after exposing them to a 450nm UV lamp for ~ 10min. This time,
the probe wavelength was A = 1530nm. Both before and after illumination, we
observed patches of high SNOM signal in both the illuminated and non-illuminated

4.1 Persistent Photoconductivity (PPC) in LaAlOs/SrTiO3
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Fig. 4.3: Cartoon of single slit diffraction setup of PPC experiment.

areas of LAO. This might be a result of photoconductive effects diffusing across
the sample, or background scattered light. All SNOM measurements displayed an
optical interference pattern, that could not be associated with the miscut steps of
LaAlOs/SrTiOs3 or its electronic structure, as it appears in the amorphous BTO
regions seen in Fig. 4.2 as well.

In order to control the areas of illumination, we set up a far-field diffraction experi-
ment. We illuminated the samples with a SpectraPhysics MaiTai HP 70-100fs tunable
ultrafast Ti:Sapp laser (690-1040nm), tuned to 730nm. The beam was focused to a
nonlinear BBO crystal to produce via second harmonic generation the desired UV
exposure wavelength of 365nm, which was impinged on a tunable single slit to
create a diffraction pattern on the sample of interest, as depicted schematically in
Fig. 4.3.

I scanned a 10u.c. LaAlO3/SrTi0s5 heterostructure in the SNOM with a A = 685nm
wavelength before and after exposing it to a UV diffraction pattern via a slit of
10-20m in width. It is important to note that for these measurements, we used a
tunable slit with a rotation resolution of 5um, and essentially, we had no control
over its absolute width. I will address this issue later in this section. The top row
of Fig. 4.4 shows the third harmonic optical and optical phase SNOM 50x50um
channels scan of the 10 u.c. LaAlO3/SrTiO5 sample directly after exposure to the
365nm laser. As each scan had an area of 350x350 pixels with a 6.1ms integration
time per pixel, it took a total of 25 minutes. The bottom row of Fig. 4.4 is the
same two channels of the scan of the same sample in the same location, 15 hours
post-illumination. The optical phase scan in Fig. 4.4(b) clearly shows a 7um
diffraction pattern, corresponding to a slit with a width of a few millimeters. To
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better emphasize the details of the diffraction pattern created on the heterostructure,
Fig. 4.5 shows cross correlations of the optical scans of the LaAlO3/SrTiO3 sample
directly after illumination, one hour and 15 hours post illumination with respect to
bulk STO unilluminated samples. The cutlines of each scan show obvious periodic
patterns that decay over time. This suggests the existence of a localized persistent
photoconductivity in LaAlOs/SrTiO3 heterostructures. However, the single slit
diffraction pattern was too intense and difficult to control in order to analyze in a
deterministic way. Therefore, I designed an experiment to expose LaAlO3/SrTiO3
and bulk SrTiO3 samples to 365nm illumination through a series of double slits
with a varying distance. The slits were fabricated at the Tel Aviv University Center
for Nanotechnology and Nanoscience by evaporating a 10um layer of Aluminum
on a Si0, and opening two 10um wide slits situated at distances of 3,5,7,9,11
millimeters. These will ensure a diffraction pattern with at least three intensity peaks
on a sample exposed at a distance of 10 centimeters from the slits. Due to technical
constraints, this experiment is currently pending results.

(a)

(c) (d)

Fig. 4.4: Near field scanning optical microscope (SNOM) scans of LaAlO3/SrTiO3 het-
erostructure exposed to sub-bandgap illumination. (a) Third harmonic optical
and (b) optical phase SNOM 50x50um scan of LaAlOs/SrTiO3 heterostructure
directly after exposure to 365nm laser. (c) Third harmonic optical and (d) optical
phase signal of the above, 15 hours post-illumination.

4.1 Persistent Photoconductivity (PPC) in LaAlOs/SrTiO3
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Fig. 4.5: Top: Cross correlation of 50x50um near-field scans of 10 unit cell LaAlO3/SrTiO3
samples with respect to bulk STO samples (a) immediately after exposure to a
pulsed wavelength of 365nm illuminated through single slit for 10 minutes, (b) one
hour post-illumination, and (c) 15 hours post-illumination. Bottom: Respective cut-
lines of each scan shows a clear periodic pattern, decaying over time, suggesting
localised persistent photoconductivity in LaAlO3/SrTiO3 heterostructures.
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Fig. 4.6: Universal detuning-modulated composite pulses. (a) Schematic depiction of a
qubit, a two-level quantum system with coupling 2 and detuning A. (b) Detuning
as a function of time for a resonant (blue), constant detuned (red) and detuning-
modulated (black) system with their respective trajectories on the Bloch sphere.
(c) Point-to-Point rotation (left) from initial state |¢ > to desired target state |t >
(continuous line) vs. erroneous experimental rotation to final state | f >. Universal
unitary gate (right) U from initial state |i > to target state |f > preserves the
unitary transformation from any other initial state |i’ > to the final rotated state

| >.

4.2 Universal Detuning Modulated Composite
Pulses

The work introduced in Chapter 2.2.2 produced composite pulses that address state
transfer only from the initial state of the system. This is generally not suitable for
quantum computers, that need general unitary rotations that perform well for any
initial state. Thus, we began to expand this technique to address qubits in any initial
state and developed the first detuning-modulated composite pulse sequence for the
implementation of robust universal DMCPs within the finite lifetime of the system.
These pulses are independent of the qubit’s initial state and are robust to errors
of up to tens of percent in the target values of the pulse area. Furthermore, our
pulses are stable against the system’s lifetime, maintaining fidelity above the QIP
threshold of 10~ for high values of the system’s decay parameter, which is crucial
for future implementation of scalable QIP circuits. Universal DMCPs will provide
a basis for derivations of unitary gates applicable to a variety of qubit platforms.
It is important to note that the robustness of universal DMCPs to errors in target
coupling or detuning values separately reaches a lower fidelity of 10~2. Additionally,
while these pulses were designed to achieve stability to amplitude errors of the off
diagonal element of the unitary propagator, its phase is not. Further derivations
of unitary gates that are stable against amplitude and phase errors are beyond the
scope of this work.

We begin to lay out the basis for universal detuning-modulated composite pulses
by differentiating between two different types of pulses: point-to-point (PP) and

4.2 Universal Detuning Modulated Composite Pulses
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universal rotations (UR). The first are constructed to transform a given state to a
desired final state, while the latter is designed to create a given rotation around
a specific axis and angle for any arbitrary initial state. The PP solutions based on
DMCPs developed in the previous section 2.2.2 for the most general qubit system
[93].

In order to create state-independent single-qubit gates that are robust to various
system inaccuracies and conclude in high-fidelity states, we apply a procedure
adapted from a previous work [94] for constructing a UR pulse for a rotation angle
6 from a PP pulse with half the angle /2. We construct universal rotations from a
series of sign-reversed palindromic DMCPs. In order to create a rotation by the angle
6 around axis k, the unitary transformation Uj(6) = e~/ can be decomposed to
two consecutive rotations of angle /2 around the k axis. Moreover, a ¢ rotation
around the the # axis can be decomposed to two PP pulse sequences:

Us(6) = V)V (v), 4.1)
where V' (v) is the propagator describing a 6/2 rotation PP sequence around a given
range of axis offsets v and V”(v) is its time and phase-reversed counterpart. Namely,
a UR pulse is constructed by concatenating the original pulse sequence V' (v) to the
time and phase-reversed pulse sequence V”(v). The phase reversal can be done
around any axis; for e.g. 2, this results in —Z2, which is a sign reversal of the detuning
parameter. Note that for Z, since ¢ = 0, phase reversal of the pulse results in z.

To achieve universal DMCPs with the aforementioned formalism, we reversed the
sign of the detunings calculated for half the target rotation angle values of a DMCP
[93].

The construction of an N — piece universal detuning-modulated 6 pulse is as follows:

1. For V(v), calculate a N/2-piece detuning-modulated /2 pulse sequence with
N/2 values of A = Ay, ..., Ao, where the rotation axis offsets v are calculated
according to the resulting Bloch vector frequency —;/Q, ;% + A; /€, ;2 (see
Fig. 4.7).

2. The detuning-reversed V"(v) is the above sequence with A = —Ay /25 ey —A1L

3. The complete N— piece universal detuning-modulated sequence is the con-
catenation of the two seqeuences.

In the following, we devise the minimal first-order universal detuning-modulated
composite sequences. These are the family of solutions that nullify up to the third
derivatives of the off diagonal element of the total propagator with respect to the
pulse area around A = 7 [93].

To achieve the shortest universal detuning-modulated = pulse with N = 4 pieces, we
calculated a 7/2 detuning-modulated pulse sequence composed of N/2 = 2-pieces

Chapter 4 Additional Work



)]

G - .
@ 1 '*5 Ist order 0o
o0 —
L:: g st ‘ ‘ )
205 g0 2 4 6
[}
5 : : :
'E :) 2nd order 0o
= | | |
0 = 0_,_1 —1
5 s ‘
A o 2 4 6
10+ ‘
(b) 1 (@] Ist order 01
S0
) 2101 ‘ ‘ ‘
£0s 5 0 ! 2 3
5 g
. — 507 T
= < 2nd order
e Q=1
=
0 $=
250 r : : : .
5A/A 8 0 1 2 3 4

Time in units of 7/{2g

Fig. 4.7: Fidelity of detuning-modulated universal single-qubit DMCPs. (left) First-
(continuous lines) and second-order (dashed lines) (a) 7 and (b) 7/2 pulse vs.
errors in the pulse area for different initial states |0) (I - black), 1/4/2(]0) + |1))
(II - red) and 0.9 (blue) with matching (center) first-order trajectories on the
Bloch sphere. These trajectories are plotted around the vector frequencies
—Q;/Qg.:& + A;/Qq ;2 (red arrows), which directly correspond to the axes offsets
of the propagator V(v) (see text for details). The construction of the universal
pulses by detuning modulation (right) for first- (N=4) and second-order (N=6)
pulse sequences as a function of time in units of the generalized Rabi frequency.
All sequences are demonstrated with constant and normalized coupling 2 = 1.

as V(v) with two values of A = (A1, As). An equal superposition between the two
qubit states is realized when a single-qubit rotation T is at an angle 6 = 7/2:

T— c.os'H —isin 6 . 4.2)
—isinf@  cos@

For N/2 = 2, the condition for the off-diagonal DMCP propagator element reads

[93]:
A Ay

|U12|2 _ 19 Q2
Ji+5/1+42
Solving this equation for one of the independent parameters, é—i, we find that it
is satisfied for 6—11 =(-1- é—;)/(—l + é—;) and é—ll =(-1+ é—j)(l + é—j). For a
first-order sequence, this solution is plugged into the second derivative of |U;3|? with

=—-1/v2. (4.3)

respect to A at A = 7 and we find its roots:

(Al JAD)

o (72) = +(5.52,0.69). (4.4)
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Fig. 4.8: Infidelity (1-F) in logarithmic scale of detuning-modulated universal CPs. Infidelity
of first-(red) and second-order (blue) (a) 7 and (b) 7/2 pulses to pulse area errors.
These pulses outperform single resonant pulses, plotted for reference in black.
They maintain robustness within the 10* QIP infidelity threshold, shown as a
dashed black line, for errors of up to at least 10% from the target pulse area value.

AL A A A
N Order (7;’97;""’_97;’_97;)
4 1 +(5.52,0.69, —0.69, —5.52)

6 1 (5.89,1.01, —5.68,5.68, —1.01, —5.89)
6 2 (—4.25,—-1.96,1.65, —1.65, 1.96, 4.25)
Tab. 4.1: Detuning parameters for universal detuning-modulated composite 7 pulses.

This gives the interaction parameters of a 2-piece sequence that produces a robust
detuning-modulated 7 /2 pulse [93]. Given this and the above formalism, the shortest
universal DMCP is A; = £+(5.52,0.69, —0.69, —5.52) 2. This sequence enables a =
rotation for any initial qubit state, and is very robust to errors in target pulse areas.
To increase robustness to the above errors, we solved for the family of second-order
universal detuning-modulated pulses, nullifying up to the sixth derivative of the
modulus squared value of the total propagator with respect to A at A = w. These
result in sequences with a minimal length of N = 6. We show the shortest solutions
for first- and second-order universal detuning-modulated 7 pulses in Table 4.1.

In order to create universal and robust single-qubit 7 /2 pulse, two steps are required.
The above technique is used to first derive a detuning-modulated N/2 = 2-piece
7 /4 pulse sequence. Then we reverse the sign of the detuning to create a universal
sequence with A; = (11.99,1.94, —1.94, —11.99) Q. The shortest sequences for first-
and second-order detuning-modulated composite 7 /2 pulses are shown in Table 4.2.

A A A, A
N  Order (oot~ —a)
4 1 (11.99,1.94, —1.94, —11.99)

6 1 (—0.97,0.97,0.37,—0.37,—0.97,0.97)
6 2 (—52.23,—6.76, —1.74,1.74,6.76, 52.23)
Tab. 4.2: Detuning parameters for universal detuning-modulated composite 7/2 pulses.
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Fig. 4.9: Contour plots of the robustness of universal unitary detuning-modulated
pulses. (a) Fidelity of a 1st-order universal unitary 7 pulse against errors in
individual detuning A /A and coupling 692/) errors. The color scale ranges from
a fidelity of 10~ to a fidelity of 10°; in grey scale we accent the contour for which
the fidelity is within the 10~ QIP threshold. (b) Fidelity of a single resonant pulse
against errors in the coupling and detuning. A single point on this contour plot
achieves fidelity higher than 10~%.

We tested the fidelity of universal DMCPs against various target system parameters.

We evaluate the robustness of the pulses as a function of target values of pulse
areas for different initial states (see Fig. 4.7). The robustness to errors maintains a
high fidelity that is independent of the system’s initial state, and increases for the
second-order pulses plotted as dashed lines. We plot the infidelity of these pulses
in logarithmic scale (see Fig. 4.8) and compare it to that of a single resonant pulse
and the QIP infidelity threshold of 10~ for reference. The universal 7 pulses display
robustness to errors of up to 28% in the target pulse area while the universal 7 /2
pulses are robust to errors of up to 8%, compared e.g. with the 0.6% robustness of a
single resonant 7 pulse.

In the detuning-modulated case, the pulse amplitude is a function of the coupling
and the detuning. Any error in the pulse amplitude can be attributed to an error in
the time in which the pulse was impinged on the system (as in the previous analysis)
or to an error in either the coupling or the detuning. Thus, we studied the fidelity
of the pulses as a function of the target detuning and coupling values, under the
assumption that the realized time for each pulse was the target time (errorless).
Fig. 4.9(a) is a contour plot of the first-order universal detuning-modulated 7 pulse
fidelity, as a function of errors in the individual target coupling and detuning values.
The color scale of this plot is from a fidelity of 10~2 to 10°, and we accent in greyscale
the contour of the combined values of coupling and detuning that achieve fidelities
above 10~*. For a single resonant pulse, this contour is minimized to a single black
point of an errorless coupling value, as seen in Fig. 4.9(b). We provide full-ranged
contour plots for the fidelity of the universal DMCPs against errors in the target
coupling and detuning values in Fig. 4.10.

As composite sequences are comprised of a series of pulses, their overall implementa-
tion time is longer than that of a single resonant pulse. Therefore, one must also test

4.2 Universal Detuning Modulated Composite Pulses
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Fig. 4.10: Contour plots of the robustness of universal detuning-modulated pulses. 1st- (left)
and 2nd-order (right) universal 7 (top) and /2 (bottom) detuning-modulated
pulses as a function of individual detuning A /A and coupling 692/ errors. The
contour plots show large areas in which the pulses are robust to errors in target
values of these parameters.

their fidelity against the system’s lifetime. Substituting A — A — i~y in the diagonal
elements of the Hamiltonian presented in the main text, we find the probability
amplitude of each state according to |c¢;(t)|2e~7*/2, where ~ is the characteristic

relaxation time of the system is T} = !

. For free decay, T} is independent of
T,, and there is an upper limit [95, 96] for the decoherence rate 7> < 27;. Fig.
4.11 presents the robustness of both the 7= and 7 /2 pulses to with respect to . We
considered experimentally reported values of ~ of the order of €2 [97, 98, 99, 100]
to show that our pulses are robust to decoherence and that their implementation

time is well within the decay rate of the qubit.

The presented formalism for universal detuning modulated composite pulses is
suitable for any irreducible n-level system with SU(2) symmetry (note that in this
chapter, we define capital N as the number of pulses in a composite sequence
and lowercase n as the number of levels in a multi-level system). I consider non-
degenerate levels, in which the diagonal elements of the Hamiltonian representing
the system’s dynamics are the cumulative detunings of the excitation laser frequency
from each Bohr frequency A, and the off-diagonal elements link the different
dipole transition moments between each two adjacent levels to the exciting electric
field amplitude whose carrier frequency matches the Bohr frequency of this exact
transition, namely €,, (i.e. the Rabi frequency for a transition between two adjacent
levels). A variety of n-level solutions has been presented over the years, and in
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Fig. 4.11: Robustness of universal detuning-modulated CPs vs relaxation. Infidelity, 1 — F',
of universal  (red) and 7/2 (blue) pulses in logarithmic scale as a function the
system’s decay rate in units of Q. The pulses maintain robustness within the 10*
QIP infidelity threshold, shown as a dashed black line, for decay rates lower than
10% of the system’s coupling value. The infidelity of a single resonant pulse is
out of the scale of this graph.

our manuscript, we refer to the Jacobi solution, given by €2, = Q¢/n(N — n) and
A, =nlAg + Dy. By using the irreducible matrix representation for SU(2) symmetry
it was shown [65] that these off-diagonal elements are not necessarily equidistant.
Taking note of the three-level system in Fig. 4.12(a), one of the two level pairs can
be illuminated and excited with one of three fields: €1 (t) = Apie™21? with detuning
A1g = wr1 — wig OF €12(t) = Apger2t with detuning As; = wrs — woy. In this case,
the Rabi frequencies are Q19 = 2411 (t)d1o/h and Qa1 = 2A15(t)d21/h. Assuming
the above-mentioned Jacobi solution, and choosing Dy = 0, we set the excitation
laser frequencies, such that the detunings are A1y = Ag and Ay = 2A. One can
also chose the values of A to comply with the Rabi frequencies in this solution, which
will be equal in this case Q219 = 91 = V2.

In the following, I present an implementation of the above universal detuning-
modulated composite pulses method to control a three-level system described by the
SU(2) Hamiltonian:

H = ReQy0,; + ImSQyo, + Ad, (4.5)

where o; are the 3 x 3 Pauli matrices. Assuming a /N = 4-piece universal detuning-
modulated composite 7 pulse, the system’s evolution is described by the composite
unitary matrix UWN=4) = U,U3U,U;, where U;, described by eq. 2.11, is the unitary
propagator or the piece-wise Hamiltonian H; = Re$)y ;0 + ImSg 0y + Ai0>.

For the sake of simplicity, we will set a constant coupling 2; = €2, such that the
complete composite sequence is governed by the detuning parameters derived in
the above section. We reprise the shortest first-order universal detuning modulated
composite solution A = [5.52,0.69, —0.69, —5.52](2 and implement it on a three-level
SU(2) symmetric system. This results in robust palindromic state transfer shown in
Fig. 4.12(b) that is robust to errors in the target pulse area from any initial state

4.2 Universal Detuning Modulated Composite Pulses
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Fig. 4.12: Implementation of universal DMCPs in n-level systems with SU(2) symmetry.

(a) A three-level irreducible system with Rabi frequencies 2, ;; and detunings
A; i+1. (b) Palindromic state transfer from |0 > to |2 > in a three-level system
due to a first-order universal N = 4 detuning-modulated composite 7 pulse.
(c) Infidelity (1-F) of the above first-order (red) and second-order (blue) «
pulse in logarithmic scale to errors in the target pulse area. Both outperform a
single resonant pulse, shown in black for comparison, maintaining fidelity that
is higher than the threshold for quantum information processing up to errors of
JA/A = 18% for the first-order case and 0A/A = 27% for the second-order case.
(d) Fidelity (F) of the shortest first-(continuous lines) and second-order (dashed
lines) universal detuning-modulated composite 7 pulses to errors in the target
pulse area for different initial states: |0) (black), 1/v/3(|0) + [1) + |2)) (red) and
0.9]0) + 1/0.19/2(|1) + [2)) (blue).
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(Fig. 4.12(c-d)). The contour plot describing the robustness of this pulse sequence
to errors in the target coupling and detuning parameters is similar to that of a
two-level system. We note that as the unitary matrix elements grow in complexity
for higher-level systems (n > 4), the shortest second-order sequence does not always
outperform the first. That being said, all sequences maintain high fidelity against
pulse area errors above the QIP threshold of 10~%.

4.2 Universal Detuning Modulated Composite Pulses
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4.2.1 Realization in Quantum Integrated Photonic Circuits

As detuning-modulated CPs enable implementation in systems with real-valued
couplings, it is straightforward to realize the above universal sequences in quantum
integrated photonic circuits [101, 102], which suffer from inaccuracies originating
from fabrication defects and environmental characteristics (i.e. temperature). Uni-
versal detuning-modulated CPs not only allow to overcome inevitable fabrication
errors in such integrated devices, but relax the need for a precise initial state of light
coupled into the system in order to achieve accurate gate operations.

Fig. 4.13(a) schematically shows a photonic circuit comprised of two coupled optical
waveguides, situated at a distance of g from their center lines. The amplitudes
of the fundamental modes in the waveguides follow the coupled mode equations
[39]. Similar to Eq. 2.10, the coupling is = ae~%, where a, b are material and
geometry-dependent. The system is said to be on resonance if the two waveguides
are identical in material and geometry, otherwise there exists a real-valued phase
mismatch between the propagation constants 3; which we define as the detuning
A = (p1 — B2)/2. The universal detuning-modulated CPs can be applied to such a
system by varying the relative widths of the waveguides to create discrete changes
of A along the propagation axis. For further details of this realization, see section 6.
Fig. 4.13(a) is a top view of the light intensity propagation of a N = 4-piece coupled
waveguide system that realizes the required changes in A to obtain a 7 pulse (Table
4.1). This was simulated via an eigenmode expansion solver (EME) [103]. The light
intensity at the center line of each waveguide is plotted to stress the complete light
switching in the coupled system in Fig. 4.13(b).

In the Appendix, I present a scheme to translate the theoretical parameters of
detuning-modulated composite pulses to executable geometric designs of integrated
photonic systems. Namely, I lay out the steps taken to scale and tweak the detuning
parameters for N-piece DMCPs for coupled waveguides.

Chapter 4 Additional Work
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Fig. 4.13: Complete light switching in a universal detuning-modulated composite waveguide
coupler. (a) (top) An out-of-scale schematic of the first-order N = 4-piece
waveguide design. Light is initially injected to waveguide 1 and is transferred
to waveguide 2. (bottom) Top-view of an eigenmode expansion solver (EME)
calculation of the light intensity of the coupled waveguide system. (b) A cutline
of the electromagnetic field intensity in the middle of waveguide 1 (black, initially
populated) and waveguide 2 (red, initially empty) vs the normalized propagation
length.
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Discussion and Future Research

5.1 Near Field Optics and Dynamics

We developed a multifrequency excitation and detection method to achieve improved
optical contrast in near-field optical measurements, while maintaining a high signal
to noise ratio. In Fig. 5.1, I present an experimental comparison of mono-modal vs.
bi-modal SNOM measurements to highlight this feat. I measured the same plasmonic
gold nanobar on ITO, illuminated at 1550nm and excited separately via (a) mono-
modal tip excitation at frequency f and demodulation at 4f and (b) bi-modal tip
excitation at frequencies f and f’ and demodulation at 2(f + f’). The signal intensity
was measured at its strongest spatial point at all available demodulation frequencies
per excitation. It is immediately apparent that while the optical contrast remains
similar (as seen in publication 1, in Chapter 3.1), the difference in the signal intensity
compared to that achieved by demodulation of the fundamental frequency is very
significant - the high contrast signal drops to 0.1% in the mono-modal case but only
50% in the bi-modal case.

This method utilizes fast signal processing to diminish the trade-off between optical
contrast and SNR. Thus far, all of our measurements were performed on materials
in the steady-state, with spatially-resolvable features. An interesting avenue to
approach with MF-SNOM would be to perform conclusive measurements to show that
this improvement leads to higher resolution. Furthermore, as this imaging method
is temporally limited by raster-scanning and single-pixel integration times, transient
effects of near-field light-matter interactions are very difficult to measure. While past
research has been able to combine between the ultra-small spatial resolution the
SNOM has to offer with the ultra-fast temporal resolution of pump-probe microscopy
[104], the resultant measurements were of a highly complex interference pattern
of many excitation points over time. One way to overcome this would be to apply
sparse sampling [105, 106], since the sparse signal resides mainly in the vicinity of
the location of excitation, in order to allow for faster image processing [107].

Near Field Studies of Persistent Photoconductivity
in LCLAZOg/STTZOg

In the following, I present suggestions for future work to gain a better understanding
of the underlying mechanism of persistent photoconductivity in LaAlO3/SrTiO3
heterostructures.

One possible research avenue would be to couple an optical fiber to the SNOM in
order to locally control the excitation of the measured sample. This will enable the
simultaneous change of resistivity of the sample with an adequate wavelength, and
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Fig. 5.1: Near-field optical measurements of a gold nanobar, illuminated at 1550nm. On the
left, we used mono-modal excitation and detected the optical signal, demodulating
at the fourth harmonic. On the right, we applied the novel bi-modal tip excitation
technique, demodulating at the second harmonic of the sum of the two frequencies.
While the difference in the signal intensity (SNR) between the 1st and 4th harmonic
in the mono-modal method is of the order of 1/1000, for the bi-modal method, it’s
of the order of 1/2.

to locally probe the change in optical signal in the near field. This will also help
better understand and conclude whether PPC in LaAlO3/SrTiOs is a local effect. It
may be particularly interesting to extract from optical traces a coherence length of
local changes of conductivity from such measurements.

Combining the notion of local excitation with sparse signal processing mentioned in
Section 5.1 will allow for comparison of continuous wave induced photodynamics to
ultrafast ones in this material. This may answer the question of whether significant
novel features are apparent in the near field, and how are these compared to far
field measurements.

Finally, it may be appealing to study to find a theoretical explanation of persis-
tent photoconductivity in LaAlO3/SrTiO3 formulated via near field measurements
and/or by use of a broadband source. Namely, is there a theory to show whether the
source of PPC is in the oxygen vacancies in Sr7i0O3 or the two dimensional electron
gas at the interface of the two materials? This may serve as a base for future studies
of conduction boundaries in various two-dimensional materials, such as graphene,
MoS,, mixed granular structures with percolation limits and more.

5.2 Composite Pulses for Quantum Information
Processing

As discussed in Chapter 2.2.2, we have introduced a new family of detuning-
modulated CPs to enable high-fidelity state transfer within the quantum error
threshold of 107, that is robust to errors of up to several percent in the target
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values of coupling, detuning and pulse area. We also show that our method offers a
minimal pulse overhead and robustness to the system’s lifetime, where the shortest
sequence is composed of N = 2 pulses. We extended this findings and developed a
universal detuning-modulated CP technique, where the shortest sequence is com-
posed of N = 4 pulses. This, to the best of our knowledge, is currently the shortest
available universal composite sequence.

This technique is suitable for, but not limited to, implementation in integrated
photonic circuits, which are considered a strong candidate for quantum computation
hardware and QIP. As integrated photonic circuits are prone to fabrication errors,
leading to a decrease in the produced signal fidelity, their application in QIP has been
considered limited. Furthermore, precise quantum state preparation in integrated
photonics requires an additional preliminary process of state preparation, which
adds to the complexity of scaling-up device fabrication. To this end, universal
detuning-modulated composite pulses may enable the production of high fidelity
photonic gates for quantum computation without rigid requirements of the input
signal. An ongoing collaboration with the Zadok Laboratory at Bar-Ilan University is
pending initial experimental results of this photonic implementation.

In the following subsections, I briefly summarize ongoing projects that stemmed from
the results of my research: deep learning for nanophotonics, detuning-modulated
composite designs of crystals for nonlinear frequency conversion and an extension
of universal detuning-modulated composite pulses to derive two-qubit gates.

Deep Learning for Nanophotonics

This work provided a basis for a fruitful collaboration to combine machine learning
with photonics. Our recent work, "Deep learning based reconstruction of directional
coupler geometry from electromagnetic near-field distribution," [108] addresses the
fact that the process of fabricating integrated photonic circuits is long and tedious,
and is generally interrupted for critical dimensions monitoring. Since many of
these devices are typically buried beneath an oxide layer, the task of recovering the
system’s physical geometry post-fabrication is a major challenge. Moreover, while
measurements of near-field electromagnetic intensity distributions of devices of a
certain geometry are straightforward to perform, the inverse problem of analytically
recovering the geometry of a physical system from its EM field is very difficult. We
introduced a deep-learning approach to overcome this challenge. The problem of
accurately recovering the geometry of buried waveguide structures was formulated
as an image-to-image translation. The input to the deep-learning algorithm is a map
of the spatial distribution of the EM field intensity measured above the oxide layer
of a coupled waveguide structure. The output is a spatial map of the structures’
dielectric constant.

This research is the first to suggest a deep learning approach to solve the problem
of retrieving the underlying geometry of a buried coupled waveguide structure.
Furthermore, the technique allows for a continuous image-to-image translation

5.2 Composite Pulses for Quantum Information Processing

79



80

of a two-dimensional EM-field map to a matching two-dimensional reconstructed
geometry. Most importantly, the method has excellent ability to output geometries
from EM-fields well outside the distribution of the training dataset, demonstrating its
remarkable learning capabilities. This work constitutes a baseline for future works of
recovering more complex systems, such as waveguide arrays, as well as the retrieval
of nonlinear optical dynamics and decoherence.

Our work engages the wide community that constitutes the field of photonic fabrica-
tion, and is the first to apply Pix2Pix, a strong universal image-to-image translation al-
gorithm used, among other purposes, to optimize road pictures taken by autonomous
vehicles. Our paper is a cornerstone for implementing elaborate algorithms from the
field of computer vision on photonic circuit design. From a design and fabrication
standpoint, it provides opportunities for innovative outlooks in post-fabrication and
validation of classical and quantum integrated photonic devices.

Detuning-modulated composite segmented nonlinear crystals

An additional collaboration that emerged from the work on detuning-modulated
composite pulses is in the field of non-linear optics. As the sum frequency conversion
process portrays SU(2) symmetry under the undepleted pump approximation [109],
it is straightforward to adopt the composite pulses formalism to design detuning-
modulated composite segmented periodically poled (CSPP) crystals for non-linear
frequency conversion.

Detuning-modualted two-qubit gates

A natural continuation of detuning-modulated composite pulses would be to search
for detuning-modulated composite two-qubit gates. Previous works [110, 111]
have suggested an implementation of coupling-modulated composite pulses for two
qubit gates based on the well-known Wimperis BB1 scheme [112]. This achieves
robustness to errors of up to the order of six in the two-qubit coupling parameter
J. However, the technique is of little novelty and results in a very long composite
sequence, that is not always robust to the lifetime of the two-qubit system. Herein, a
more general formulation of traditional composite pulses two-qubit gates [113] may
result in shorter robust sequences.

The basic notion of the above general formulation is that all NMR operations are
implemented by single qubit gates R(0, ¢) and two-qubit gates S(©). A minimal
composite pulse sequence for a two-qubit gate is suggested to follow the schematic:

The single-qubit operator R is in fact equation 2.11, which can be describe via the
Cayley-Klein parameters:

. 5.1
—b e o* (>-1)

Ula,b) = l a be~i® ]

and the two-qubit operator is:
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Fig. 5.2: Schematic representation of composite two-qubit gate for N=3, where S and R
denote two- and single-qubit operations respectively.

5(0;) = o (5.2)

It was shown [113] that if A = 0, the minimal solution for a two-qubit gate is
obtained for N > 3. I propose a search for detuning-modulated solutions within
the scope of this formalism, that may uncover shorter composite pulse sequences to
obtain robust two-qubit gates.

5.3 Summary

Over the course of the past five years, I conducted a comprehensive study of near-field
optical microscopy and quantum coherent control. This work, comprised of peer-
reviewed journal publications along with extensive backgrounds and supplemental
material to each paper, illustrate a coherent evolution of my research.

In Chapter 2.2.1, I describe the theoretical derivation and experimental application
of multifrequency near-field scanning optical microscopy (MF-SNOM). This tech-
nique enables for enhanced sensitivity in near-field optical contrast imaging, while
maintaining a high signal-to-noise ratio.

Chapter 2.2.2 construes the historic origins, current limitations and proposed so-
lutions of composite pulse sequences. First, I extend the scope of composite pulse
sequences from two-level quantum systems to N-level systems with SU(2) symmetry.
Next, an immediate motivation for deriving detuning-modulated composite pulses
(DMCPs) was declared as a means to overcome limitations of fabrication errors in
integrated photonic circuits - where composite pulses had not been applied. A broad
study of DMCPs for single qubit gates was introduced, opening avenues for quantum
information processing implementation in photonic systems.

In Chapter 4, I presented additional work. First, I outlined the plan and execution of
an interdisciplinary study of persistent photoconductivity (PPC) in the complex oxide
interface, LAO/STO. By tailoring the excitation method and conducting measure-
ments in the near-field, we were able to characterize PPC in this material as a local
effect at room temperature. Finally, my thorough derivation of universal detuning-

5.3 Summary
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modulated composite pulses was described, along with a complete translation of the
theory to photonic circuit design.

The conclusions and insights of this work provide a strong basis for future research
on the interface between near-field optical phenomena and quantum information
processing. In particular, the detuning-modulated composite pulses can be imme-
diately realized in passive integrated photonic devices for light propagation that is
robust to fabrication errors. Further assimilation with methods of deep learning will
allow to develop algorithms for precise state preparation, transfer and active control.
The versatile method of universal detuning-modulated composite gates will pave the
way to achieve high precision in quantum gates via short and elegant solutions. I
hope that it will further push the capabilities of reaching high fidelity in any qubit
architecture and for large scale quantum circuits designs.

Chapter 5 Discussion and Future Research



Appendix: Implementation of
DMCPs in integrated photonic
systems

Without loss of generality, I lay out the specific steps taken to scale and tweak
the detuning parameters for N-piece DMCPs calculated for Si on SiOy coupled
waveguides. Given the available fabrication capabilities, I considered waveguides
at a given constant height of ~ = 340nm and a base width of wy = 220nm and vice
versa; with grating-coupled light of wavelengths 1550nm and 1310nm.

1. Employ Lumerical Finite Difference Eigenmode (FDE) solver [103] to calcu-
late the "on-resonance" eigenmodes of the coupled waveguide system, where
both waveguides are of identical geometry and material. By calculating the
symmetric and anti-symmetric eigenmodes for different distances g between
the waveguides, the coupling of the system, x = (54 — 5-)/2, is plotted as a
function of g.

2. Calculate the detuning as a function of the difference between the two waveg-
uide geometries. Use FDE to calculate the single-waveguide propagation
constant 3, as a function of width w = wy + 6. The resulting detuning is the
difference between this propagation constant and that of the base width 3,0,

namely A = (Buo — fw)/2-

3. As the above process is numerical, it doesn’t take into consideration effects,
such as back-reflections created by the boundaries between two detuning-
modulated waveguide pieces. Thus, we perform an iterative process of simu-
lating the full detuning-modulated coupled waveguide light propagation, by
using a Lumerical Eigenmode Expansion (EME) solver, to tweak the target jw
geometric detuning values and propagation lengths.

In order to fabricate these, we provide the geometrical parameters required to design
robust Si on SiOy waveguide couplers for input wavelengths of A = 1310nm and
1550nm. Specifically, the following examples translate the parameters of Table 6.1

A1 A A A
N Order (ST;’ST;’”"_ST;’_Q*”
2 1 +(1,-1)
3 2 (1,0, —1)2.5425

4 1 (1,-1,1,-1)(/(2) + 1)

Tab. 6.1: Detuning parameters for detuning-modulated composite 7 gates.
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Fig. 6.1: Flow chart for determining the geometrical parameters demanded for specific cou-
plings (I) and detunings (II) of a detuning-modulated coupled waveguide system.
All calculations were performed via a FDTD Comsol Multiphysics simulation.

to Si on Si0O, two, three and four-piece 1st-order, and a three-piece 2nd-order

detuning-modulated waveguide systems.
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Fig. 6.2: Geometric layout of (a) N=2-piece 1st-order (b) N=3 1st-order (c) N=3 2nd-order
and (d) N=4 1st-order coupled waveguide systems. L; are the lengths of each
segment i, wicrt, (Wright,) are the widths of the left (right) waveguides of each
segment, and g; are the edge-to-edge distances between each coupled waveguides
in each segment.
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Fig. 6.3: Geometric parameters of coupled waveguide system with base height of h=220nm
and input wavelength of 1310nm. Grating pitch optimized for TM mode coupling
is 0.77um.
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Fig. 6.4: Geometric parameters of coupled waveguide system with base height of h=340nm
and input wavelength of 1310nm. Grating pitch optimized for TM mode coupling
is 0.731um.
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Fig. 6.5: Geometric parameters of coupled waveguide system with base height of h=340nm
and input wavelength of 1550nm. Grating pitch optimized for TM mode coupling
is 0.87um.
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Fig. 6.6: Geometric parameters of coupled waveguide system with base height of h=220nm
and input wavelength of 1550nm. Grating pitch optimized for TM mode coupling
is 0.93um.
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Fig. 6.7: Example experimental set-up and demonstration of robustness. (a) Input CW
laser light intensity I; of A = 1310nm grating-coupled into a detuning-modulated
N=2-piece 1st order coupled waveguide system. The output light intensity I, is
grating-coupled out of the system into a detector. (b) The intensity of light in each
waveguide as a function of propagation distance. (¢) The normalized fidelity of
the output signal as a function of relative deviation from the target values of the
segment lengths ; and detuning values A,;, characterized by the segment widths
w;.
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