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ABSTRACT 

The last decades have witnessed enormous progress in our ability to control and shape light 

using two-dimensional artificial optical materials, also known as metasurfaces. These materials 

are typically made from arrays of either metallic or dielectric sub-wavelength nanoparticles. By 

judicious design of the nanoparticles' morphology, composite materials and position in the 

array, local control over the amplitude, phase and polarization of light can be achieved. 

Therefore, metasurfaces offer the possibility of miniaturizing traditional optical elements and 

realizing new functionalities. Furthermore, the great degree of freedom in their design provides 

the means to comprehensively explore a plethora of novel physical phenomena. 

The optical response of a metasurface essentially stems from each individual nanoparticle's 

response, in addition to the interaction between all nanoparticles. In recent years, it has been 

shown that collective coherent interaction of the nanoparticles in the array can play an essential 

role in the total response, giving rise to numerous intriguing physical phenomena with great 

applicative potential.  

In this thesis, we theoretically and experimentally explore fundamental aspects of the collective 

coherent interactions within arrays of metallic nanoparticles. Specifically, we focus on three 

novel aspects of these interactions: (i) Extension to the nonlinear optical regime. (ii) Temporal 

control and slow light effects. (iii) Their broadband amplitude and phase characterization. 

We start by a comprehensive introduction in Chapter 1  that serves as the foundation for the 

original research presented in this thesis. The introduction presents the subjects of linear 

(section 1.1) and nonlinear (section 1.2) metasurfaces, slow light effects (section 1.3), spectral 

interferometry (section 1.4), and the various experimental, numerical and fabrication methods 

used for the presented research (section 1.5). In Chapter 2 , which is the body of this article-

based thesis, we present three peer-reviewed publications, each focused on different aspect of 

the collective interaction. In the first paper, in section 2.1, we introduce a study of the collective 

interactions within nanoparticle arrays in the nonlinear regime. We demonstrate a new resonant 

condition for enhanced nonlinear conversion that origins from coupling of nonlinear localized 

and distributed modes. The localized modes are associated with coherent electron oscillations 

at each particle, known as plasmons, while the distributed modes correspond to surface waves 

supported by coherent diffraction. In addition, we present a theoretical framework to model the 

role of the interaction on the nonlinear response of the array in general, and specifically for 

predicting the emergence of the demonstrated effect. Thereafter, in section 2.2, we show how 

collective scattering at the array may induce tunable transparency and slow light windows. 

Finally, in section 2.3, we present an original characterization method to dynamically and 

accurately obtain the spectral phase of a microscopic sample, either in reflection or 
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transmission. The method enables flexible illumination conditions, and therefore is particularly 

advantageous for characterization of metasurfaces supporting collective coherent effects. The 

findings and developments of this thesis will pave the way to new and exciting applications in 

nanophotonics. 
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1.1 Optical metasurfaces 

Over the past couple of decades, there have been immense advancements in the ability to 

control light using two-dimensional optical materials, called metasurfaces. These are optically 

thin structured materials made from subwavelength nanostructures, also referred to as meta-

atoms, which allow control over the properties of light interacting with them. Metasurfaces 

enable the manipulation of waves in the optical far field and can be used as optical elements for 

beam shaping and holography. Moreover, metasurfaces also enable the control of light in the 

intermediate and near-field zones. By tuning the propagation of waves in the intermediate 

regime, also known as the Fresnel zone, it is possible, for example, to focus beams or engineer 

desired point-spread functions. At shorter distances, at which the behavior of light is governed 

by its near-field characteristics, judicious manipulation of the energy distribution can be 

beneficial for various processes, such as nonlinear generation of new frequencies  [1–6], 

surface-enhanced Raman scattering [7–9], enhancement of Purcell factors [10–12], and 

enhancement of the chirality of molecules [13–15]. 

Metasurfaces can be used to efficiently and locally control the amplitude, phase and 

polarization of transmitted and reflected light. Therefore, they offer the possibility of 

miniaturizing traditional optical elements and realizing new functionalities. Over the past two 

decades, a wide variety of optical elements have already been realized by using metasurfaces, 

including wave plates [16,17], polarization switches [18,19], holograms [20,21], diffractive 

gratings [22,23], wavelength-selective surfaces [24], and lenses [25–27]. Along with their 

applicative potential, metasurfaces have been shown to support intriguing physical phenomena. 

Some examples include generation of hybrid light-matter states [28,29], electron wave function 

tunneling [30,31], interaction with single molecules [32,33], negative refraction [34] and room 

temperature Bose-Einstein condensation [35]. Moreover, thanks to the great flexibility in 

design and control over their optical and physical properties, metasurfaces provide a testbed for 

exploration of fundamental physical phenomena, which appear in completely different physical 

systems. Specifically, analogies between the photonic nature of metasurfaces and electronic 

states in condensed matter, have been extensively studied. Some of these analogies, for 

example, concern with photonic (electronic) band structures and band gaps [36–38], Anderson 

localization [39,40], topological states [36,41] and spin-orbit coupling [42]. 

Numerous types of metasurfaces have been studied, spanning from metasurfaces composed of 

either metallic or high-index dielectric planar assemblies of nanoparticles to metasurfaces with 

designs based on holes in metallic or dielectric films.  

Focusing on metasurfaces composed of nanoparticle arrays, their net optical response depends 

on the individual nanoparticle response, defined by its material and morphology, the geometry 
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of the array and the surrounding media. Therefore, in section 1.1.1, we first describe the 

underlying physical mechanisms and modelling methods for the single nanoparticle optical 

response. We focus on the case in which the nanoparticles are metallic and thus support 

resonances associated with free electron oscillations, called localized surface plasmon 

resonances (LSPRs). These resonances lead to enhancement and localization of the 

electromagnetic field in the vicinity of a metallic nanoparticle, along with enhanced scattering 

cross sections. Second, in section 1.1.2 we present a comprehensive formalism to account for 

the response of a nanoparticle array, while considering mutual influence between the 

nanoparticles. Under this formalism, the distinct role of the individual nanoparticle response, 

the entire array arrangement and the properties of the applied electromagnetic field, to the net 

optical response become evident. Specifically, special attention is given to diffractive coupling 

of the nanoparticles composing the array, which may lead to new hybridized resonances, called 

surface lattice resonances (SLRs). While this thesis surveys several aspects of linear 

metasurfaces, comprehensive reviews of this subject are available [43–55]. 

1.1.1 Single nanoparticle optical response 

The optical response of a nanoparticle to an applied electromagnetic field is essential for 

determining its coupling properties to other electromagnetic scatterers, its performance as a 

basic element for beam shaping applications and even for predicting its optical nonlinearities. 

To characterize this optical response, several properties are crucial as, for example, the charge 

density and currents distributions, near-electromagnetic-field distributions and the radiation 

pattern. All of these are frequency dependent and strongly connected to the polarization of the 

nanoparticle in response to an applied electromagnetic field. The parameter that quantifies it is 

the frequency-dependent polarizability 𝛼(𝜔), which relates the local electric field 𝑬𝑙𝑜𝑐(𝜔) to 

the induced polarization 𝑷(𝜔) through the relation1 𝑷(𝜔) = 𝛼(𝜔)𝑬𝑙𝑜𝑐(𝜔). Due to the vectorial 

nature of the electric field and polarization, 𝛼(𝜔) is a 3 × 3 tensor. In most cases however, and 

specifically in the cases treated in this thesis, the off-diagonal terms of  𝛼(𝜔) are vanishingly 

 
1 We emphasize the distinct use throughout this document of 𝛼 and 𝜒, the polarizability and susceptibility, respectively. When 

considering the single nanoparticle optical response, we account for the polarization 𝑃 of the nanoparticle, mediated by 𝛼. In 

contrast, in the review of nonlinear metasurfaces in section 1.2, we account for the polarization 𝑃 stimulated by 𝜒. While in atomic 

physics there is a clear distinction between macroscopic and microscopic descriptions of the polarization by 𝑃 and 𝑝 respectively, 

in nanophotonic systems, which are much bigger than a single atom but still smaller than the wavelength, the parametrization is 

more complex. Specifically, in the context of the CDA, most studies in the literature use capital 𝑃, instead of the dipole moment 

𝑝. Therefore, to stay consistent with the literature our notation follows this distinction.   
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small. Therefore, most of the discussions will treat the polarizability as a scalar 𝛼(𝜔), referring 

only to a specific diagonal term. 

Several mechanisms can determine the resonant properties of 𝛼(𝜔) in nanoparticles, depending 

mainly on their composing material. Two of the most common mechanisms are the collective 

electron oscillations in metallic nanoparticles, called localized surface plasmons (LSP), and the 

bound electrons mediated optical modes in dielectric nanoparticles, called Mie resonances. This 

thesis focuses on collective interactions within arrays composed of metallic nanoparticles 

supporting plasmonic resonances. Yet, it should be noted that the novel phenomena explored 

in this dissertation, along with the characterization method developed correspondingly, are 

relevant also for other resonant particles as those supporting dielectric Mie resonances. The 

following sub-section reviews the fundamentals of the LSPRs.  

Metallic nanoparticles - localized surface plasmon resonances 

Surface plasmons are coherent modes of collective oscillations of the free electrons on a metal-

dielectric interface. This electron motion is associated with planar-propagating electromagnetic 

field with a dispersion relation of [56]:  

 

𝑘𝑠𝑝 =
𝜔

𝑐
√

𝜖𝑚(𝜔)𝜖𝑑

𝜖𝑚(𝜔) + 𝜖𝑑

 (1.1) 

Where 𝑘𝑠𝑝 is the magnitude of the wave vector of the surface plasmons, 𝜖𝑚(𝜔) and 𝜖𝑑 are the 

dielectric constants of the metal and dielectric material, respectively, 𝜔 is the angular frequency 

of light and 𝑐 is the speed of light in vacuum. When a metal-dielectric interface is confined into 

small areas compared to the wavelength, such as in metallic nanostructures, the electrons’ 

oscillations are non-propagating, and can be localized down to volumes smaller than the 

diffraction limit (
𝜆0

2𝑛
)

3
, where 𝜆0 is the free-space wavelength and 𝑛 is the refractive index of 

the surrounding medium. These localized electron oscillations, called LSP, can give rise to 

enhanced electromagnetic near fields and scattering amplitudes, through a resonance known as 

LSPR. Illustrative analysis that captures important features of the LSPR is based on a driven 

harmonic oscillator model [44], which results in a Lorentzian solution for the polarizability:  

 

𝛼(𝜔) =
𝐴0

𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

 (1.2) 

Where 𝐴0 is the amplitude, 𝜔0 is the resonance angular frequency and 𝛾 is the damping 

constant. Typical values of 𝛾 for resonances in the visible to near-infrared spectral range are in 
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the order of 100 𝑇𝐻𝑧, corresponding to a resonance width of tens of nanometers. These values 

are for typical metals used for plasmonic nanoparticles, such as gold, silver and aluminum. The 

metals are chosen such that at their desired frequency of operation they will be below the plasma 

frequency and with high electrical conductivity. In the driven harmonic oscillator model, a 

restoring force is exerted by the positive ions in the metal, which attract the electrons displaced 

by the electric field. The phase of the electron cloud motion relative to the phase of the electrical 

driving force determines the relative phase and amplitude of the scattered light. At resonance, 

the motion of the electrons’ displacement lags with respect to the electrical driving force by a 

phase of 𝜋/2, whereas the full spectral width extends from in-phase motion, for frequencies 

lower than the resonant frequency, to out-of-phase motion, for frequencies higher than the 

resonant frequency  (Figure 1.1). This phase trend around the resonance is essential for the 

coupling properties of plasmonic nanoparticles. 

 

 

 

Figure 1.1. Resonance response of plasmonic nanoparticles [57]. The amplitude and phase of the free 

electron cloud motion vs. the wavelength are shown, based on the harmonic oscillator model. Inset: A 

sketch of a plasmonic nanorod whose electron cloud has been displaced. The displacement behavior of 

the free electrons at a nanostructure caused by an oscillating electromagnetic field can be treated as a 

driven damped harmonic oscillator. In the vicinity of the resonance wavelength, the phase of the electron 

motion relative to the driven field changes significantly.  

The above description depicts the mechanism of plasmonic resonances only qualitatively; 

however, one must often consider the exact spectral positions of these resonances to design 

metasurfaces with the required interactions and coupling properties. To achieve this goal, one 

should choose between performing a rigorous analysis to solve the exact electromagnetic 

problem or perform numerical calculations using electromagnetic simulation tools or 



15 

 

approximate methods. An exact solution to the scattering problem exists only for spheroids [58] 

and ellipsoids [59], whereas in the general case, the polarizability of a nanoparticle can be found 

by using the quasi-static approximation. This approximation assumes that the phase of the 

applied field is constant over the entire particle volume; therefore, the particle size along the 

𝑖𝑡ℎ axis 𝐷𝑖, must be much smaller than the wavelength in the surrounding medium, i.e., 𝐷i ≪

𝜆𝑚𝑒𝑑. An important result of the quasi-static approximation is the polarizabilities along the 

principal axes for an ellipsoid with semiaxes 𝑎1, 𝑎2 and 𝑎3 and volume V =
4π

3
𝑎1𝑎2𝑎3 [60]2: 

 
𝛼𝑖

𝑠𝑡𝑎𝑡𝑖𝑐(𝜔) = 𝑉
𝜖(𝜔) − 𝜖𝑚𝑒𝑑

𝜖𝑚𝑒𝑑 + 𝐿𝑖(𝜖(𝜔) − 𝜖𝑚𝑒𝑑)
 (1.3) 

where 𝜖(𝜔) and 𝜖𝑚𝑒𝑑 are the dielectric constants of the particle and the surrounding medium, 

respectively, and the 𝐿𝑖, which satisfy 𝐿1 + 𝐿2 + 𝐿3 = 1, are geometric factors given by 𝐿𝑖 =

𝑎1𝑎2𝑎3

2
∫

𝑑𝑞

(𝑎𝑖
2+𝑞)𝑓(𝑞)

∞

0
, where 𝑓(𝑞) = √(𝑞 + 𝑎1

2)(𝑞 + 𝑎2
2)(𝑞 + 𝑎3

2).  

For a qualitative discussion of the outcomes of the polarizability expression and the conditions 

under which the real part of its denominator vanishes and a resonance condition is fulfilled, one 

can consider the simplified dielectric constant of a Drude metal below its plasma frequency 𝜔𝑝 

with a collision angular frequency 𝛾, 𝜖𝐷𝑟𝑢𝑑𝑒(𝜔) = 1 −
𝜔𝑝

2

𝜔2+𝑖𝛾𝜔
. The simple Drude model 

cannot describe interband transition effects, which typically occur in the visible regime for 

noble metals.  

Although the above polarizability result was formulated for small particles in the quasi-static 

regime, it can typically be applied for particles with dimensions on the order of tens of 

nanometers [56,61]. Moreover, it captures some of the most important features of plasmonic 

resonances, as described below. First, the different on-diagonal components of the 

polarizability described in Eq. (1.3) correspond to spectrally separated resonances, which 

depend on the semi-axes' lengths. Second, in an elongated plasmonic nanoparticle, the 

resonance along the direction of elongation redshifts as the corresponding semi-axes’ length 

increases. Third, the plasmonic resonances redshift as the dielectric constant of the surrounding 

medium increases. The polarizability of an ellipsoid, with adequate corrections to account for 

dynamic depolarization and radiative damping [62], can be used to calculate the spectral 

 
2 The polarizability has volume units according to the modified SI system used throughout this thesis [167,168]. The relevant 

quantities are summarized in the following table:  

Quantity Symbol Relation to SI 

Electric field 𝐸 𝐸(𝑆𝐼)  

Polarization 𝑃 𝑃(𝑆𝐼)/(4𝜋𝜖) 

Polarizability 𝛼 𝛼(𝑆𝐼)/(4𝜋𝜖) 

 
Exception of this notation is the standard SI system used in sections 1.2.1 and 1.5.2. The units’ notation was chosen to be consistent 

with most literature on the discussed subject and to keep the presented subject elegance.  
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positions and line shapes of the resonances for various geometries, such as nanorods, nanoplates 

and nanospheres. 

For larger particles, i.e. bigger than a few tens of nanometers, corrections to the static 

approximation are required to account for dynamical effects. These corrections for the 

polarizability are known as the modified long wavelength approximation [62], and take the 

following form: 

 
𝛼𝑖

𝑀𝐿𝑊𝐴(𝜔) =
𝛼𝑖

𝑠𝑡𝑎𝑡𝑖𝑐(𝜔)

1 −
2
3

𝑖𝑘3𝛼𝑖
𝑠𝑡𝑎𝑡𝑖𝑐(𝜔) −

𝑘2

𝐷𝑖
𝛼𝑖

𝑠𝑡𝑎𝑡𝑖𝑐(𝜔)
 (1.4) 

The two terms at the denominator that depends on 𝑘2 and 𝑘3 are associated with dynamic 

depolarization and radiative damping, correspondingly.   

An additional method to calculate the LSPR spectral location, is by modeling a nanostructure 

as an effective Fabry–Pérot cavity for surface plasmons. This treatment is justified when the 

characteristic dimension of the structure is comparable to or larger than half the effective 

surface plasmon wavelength, and it permits the determination of multiple resonance 

frequencies. For example, in a nanorod, the resonant frequencies can be derived by requiring 

one round trip of the guided mode to result in a phase accumulation of an integer multiple of 

2𝜋, as follows: 

 

𝑚𝜆𝑒𝑓𝑓 = 2𝐿 + 2𝜙𝑟  (1.5) 

where 𝐿 is the length of the nanorod, 𝜙𝑟 is the effective length of the extended field outside the 

ends of the rod, that can be related to the  reflection phase, and 𝜆𝑒𝑓𝑓 is the effective plasmon 

wavelength, which has been shown to obey the following empirical relation [63]: 

 

𝜆𝑒𝑓𝑓 = 𝑛1 + 𝑛2 (
𝜆

𝜆𝑝

) (1.6) 

where 𝑛1 and 𝑛2 are constants related to the geometry and the dielectric environment, 

respectively, and 𝜆𝑝 is the plasma wavelength. The conditions for LSPRs now becomes 

dependent on the effective wavelength 𝜆𝑒𝑓𝑓 rather than the free-space wavelength. Typical 

ratios of 𝜆/𝜆𝑒𝑓𝑓 are approximately 2-3 in the visible and near-infrared regimes, thus permitting 

deep subwavelength sizes for the nanoresonators. Using this simplified model, it is possible to 

gain valuable insight into the antenna responses of different metallic shapes, such as 

nanodisks [64–67], nanorods [63,68,69], split-ring resonators (SRRs) [70,71], and V-shaped 

antennas [72–74]. 
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From the particle's polarizability, the extinction and scattering cross sections can be calculated 

according to [60]: 

 𝜎𝑒𝑥𝑡 = 4𝜋𝑘ℑ{𝛼} (1.7) 

 𝜎𝑠𝑐𝑎 =
8𝜋

3
𝑘4|𝛼|2 (1.8) 

Where 𝕴 denotes the imaginary part.  

1.1.2 Collective array response 

The optical response of a nanoparticle array stems from the contribution of all individual 

nanoparticles. However, each nanoparticle is affected not only by the applied filed, but also by 

the scattered fields from all additional nanoparticles. Therefore, the fields scattered by each 

nanoparticle depend on the fields scattered on it by all the other nanoparticles, which gives rise 

to a system of coupled equations that need to be solved self-consistently in order to obtain each 

nanoparticle polarization. Though the resulting polarization is understood to stem from each 

nanoparticle polarizability 𝛼 and the multiple scattering processes at the array, it is often 

convenient to ascribe an effective polarizability 𝛼𝑒𝑓𝑓, which accounts for the presence of the 

array. Namely, 𝛼𝑒𝑓𝑓 describes the nanoparticle response to the applied field accounting for all 

interparticle interactions. The mutual interaction of the nanoparticles can lead to intriguing 

collective response that is substantially different from that expected by accounting for each 

nanoparticle individual response. Depending on the interplay between the nanoparticles’ 

morphology, the array geometry and the properties of the applied electromagnetic field, 

intriguing physical phenomena can emerge. Some examples are hybridized localized-

distributed modes, substantial narrowing of the spectral line-shapes [75], photonic stop 

bands [38], slow light generation [76], enhanced optical nonlinearity [5], and Bose-Einstein 

condensation at room temperature [35]. 

To study the optical response of a nanoparticle array, with capability for predicting and 

analyzing the aforementioned phenomena, the coupled dipole approximation (CDA) is often 

used [77,78]. This model serves to find the polarization vector 𝑷𝑖 of each of the 𝑁 nanoparticles 

in the array (𝑖 = 1, … , 𝑁) by solving a system of 3𝑁 coupled equations, which accounts for the 

mutual influence of all nanoparticles. We denote the 3 × 3 polarizability tensor of the particle 

located at 𝒓𝑖, by 𝛼𝑠,𝑖, and express the polarization at the 𝑖𝑡ℎ location as: 
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𝑷𝑖 = 𝑷(𝒓𝒊) = 𝛼𝑠,𝑖𝑬𝑙𝑜𝑐,𝑖  (1.9)  

Where 𝑬𝑙𝑜𝑐,𝑖 = 𝑬𝑙𝑜𝑐(𝒓𝒊) is the local electric field at 𝒓𝒊. This field is composed of the applied 

field 𝑬𝑎𝑝𝑝,𝑖, and the retarded scattered fields from all other particles 𝑬𝑠𝑐𝑎,𝑖, at that location: 

 𝑬𝑙𝑜𝑐,𝑖 = 𝑬𝑎𝑝𝑝,𝑖 + 𝑬𝑠𝑐𝑎,𝑖 = 𝑬𝑎𝑝𝑝,𝑖 + ∑ 𝐴𝑖𝑗𝑷𝑖

𝑗≠𝑖

 (1.10) 

𝐴𝑖𝑗 is the dyadic Green's function of a dipole, that describes the interaction between the 𝑖𝑡ℎ and 

𝑗𝑡ℎ dipoles. For a homogeneous refractive index 𝑛(𝜆) surrounding the nanoparticles, 𝐴𝑖𝑗 has 

the following form:  

 𝐴𝑖𝑗 = 𝐴(𝒓𝒊, 𝒓𝒋) = [𝑘2 + 𝜵 ⊗ 𝜵]𝐴0,𝑖𝑗     ,     𝐴0,𝑖𝑗 =
𝑒𝑖𝑘𝑅𝑖𝑗

𝑅𝑖𝑗

 (1.11) 

Where 𝑘 = |𝒌| =
2𝜋𝑛(𝜆)

𝜆
 is the magnitude of the wave vector 𝒌, ⊗ denotes the outer product of 

two vectors, 𝑹𝒊𝒋 = 𝒓𝒊 − 𝒓𝒋 with magnitude 𝑅𝑖𝑗 = |𝑹𝒊𝒋|, and 𝐴0,𝑖𝑗 is the scalar Green's function 

that describes a spherical wave. In Cartesian coordinate system 𝐴𝑖𝑗 can be explicitly expressed 

as [79]: 

 𝐴𝑖𝑗 = 𝑒𝑖𝑘𝑅𝑖𝑗
𝑘2

𝑅𝑖𝑗

[(1 +
𝑖𝑘𝑅𝑖𝑗 − 1

𝑘2𝑅𝑖𝑗
2 ) �⃡� +

3 − 3𝑖𝑘𝑅𝑖𝑗 − 𝑘2𝑅𝑖𝑗
2

𝑘2𝑅𝑖𝑗
2

𝑹𝒊𝒋 ⊗ 𝑹𝒊𝒋

𝑅𝑖𝑗
2 ] (1.12) 

Where �⃡� is the 3 × 3 identity matrix. This equation accounts for the full electromagnetic 

interaction between the two particles, with terms depending on (𝑘𝑅𝑖𝑗)
−3

, (𝑘𝑅𝑖𝑗)
−2

 and 

(𝑘𝑅𝑖𝑗)
−1

 associated with the near-, intermediate-, and far-field interactions, correspondingly. 

Additionally, the off-diagonal terms in 𝐴𝑖𝑗 enable inter-polarization influence. From Eqs. (1.9) 

and (1.10) a set of 3𝑁 linear equations can be obtained: 

 𝑨′𝑷 = 𝑬𝒂𝒑𝒑 (1.13) 

Where 𝑷 and 𝑬𝒂𝒑𝒑 are 3𝑁-dimensional vectors composed of the 3 components of polarization 

and applied electric field for each of the particles in the array, respectively. 𝑨′ is a 3𝑁 × 3𝑁 

interaction block matrix, that contains all the information about the coupling properties of the 

system, regardless of the applied field. It is composed of 3 × 3 blocks, where the 𝑁 diagonal 

blocks corresponds to α⃡s,𝑖
−1 and the off-diagonal blocks are according to 𝐴𝑖𝑗 from Eq. (1.12). By 
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numerically inverting the matrix 𝑨′ Eq. (1.13) can be solved to obtain the polarization at each 

array site: 𝑷 = 𝑨′−1𝑬𝑎𝑝𝑝. 

From the polarization vectors, the extinction cross section of the array can be calculated by 

summing over the extinction of all individual particles [80]: 

 𝜎𝑒𝑥𝑡 = 4𝜋𝑘 ∑
ℑ{𝐸𝑎𝑝𝑝,𝑖

∗ 𝑃𝑖}

|𝐸𝑎𝑝𝑝,𝑖|
2

𝑁

𝑖=1

 (1.14) 

Infinite periodic arrays 

In the case of an infinite periodic array of identical particles a simplification to the above 

derivation can be done, which results in an insightful analytical expression that reveals the 

fundamentals of the hybridized resonances studied at this thesis. The simplification is 

performed by considering an applied plane wave of the form 𝑬𝑎𝑝𝑝,𝑖 = 𝑬0𝑒−𝑖𝒌||𝒓𝒊 and presenting 

an effective polarizability for each particle in the presence of the array, 𝛼𝑒𝑓𝑓, that fulfills the 

relation  𝑷𝑖 = 𝛼𝑒𝑓𝑓𝑬𝑎𝑝𝑝. According to Bloch's theorem, the polarization of each particle can 

differ only by the phase factor associated with the incident field, i.e. 𝑷𝑖 = 𝑷0𝑒−𝑖𝒌||𝒓𝑖. By 

choosing 𝑟0 = 0 and defining the array's incident angle-dependent structural factor as 𝑆(𝒌||) ≡

∑ 𝐴0𝑗𝑒−𝑖𝒌||𝒓𝑗
𝑗≠0 , where 𝒌|| is the parallel to the surface component of the incident wave vector, 

the effective polarizability can be obtained from Eqs. (1.9) and (1.10): 

 𝛼𝑒𝑓𝑓 = (1 − 𝛼𝑠𝑆(𝒌||) )
−1

𝛼𝑠 (1.15) 

This equation enables calculating 𝛼𝑒𝑓𝑓 directly from 𝛼𝑠 and 𝐴𝑖𝑗, without the need to solve a 

system of coupled linear equations. We note that the matrix inversion required for solving Eq.  

(1.15) is only for a 3 × 3 matrix, rather than the inversion of 3𝑁 × 3𝑁 matrix required to solve 

Eq. (1.13). For further exploration of this important result, it is convenient to look at the scalar 

case, i.e. studying specific polarization component, and accounting for scalar quantities of 

𝑬𝑎𝑝𝑝, 𝑬𝑙𝑜𝑐, 𝑬𝑠𝑐𝑎, 𝛼𝑠, 𝛼𝑒𝑓𝑓, 𝐴𝑖𝑗 and 𝑆. This approximation is valid in many configurations, 

specifically in most cases where the nanoparticles has dominant isotropic response, i.e. with 

vanishingly small off-diagonal terms in 𝛼𝑠. In these cases, even if the applied field has more 

than one component of polarization, each component of the problem can be treated separately 

within the scalar framework. Yet, it is worth mentioning that 𝐴𝑖𝑗 and therefore also 𝑆 always 

have off-diagonal terms. These terms, for judiciously engineered surfaces, may cause 

substantial anisotropic response of 𝛼𝑒𝑓𝑓, even for purely diagonal 𝛼𝑠. A common case in which 
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the scalar approximation is fully exact, is when 𝛼𝑠 has only a single non-vanishing term on its 

diagonal. In this case, the fields radiating at the array at different polarization then the applied 

field, resulting from the non-diagonal terms of 𝐴𝑖𝑗, cannot give rise to change in the polarization 

of the nanoparticles. Overall, the validity of the scalar approximation needs to be considered 

for each specific configuration. Under this approximation, Eq. (1.15) takes the following form: 

 𝛼𝑒𝑓𝑓 =
𝛼𝑠

1 − 𝑆(𝒌||)𝛼𝑠

 (1.16) 

From this equation it is possible to obtain insights on the interplay between the single particle 

and the entire array response, manifested by 𝛼𝑠 and 𝑆(𝒌||) accordingly. To fully understand the 

outcomes of this result it is essential to take a close look at the properties of 𝛼𝑠 and 𝑆. As 

discussed in section 1.1.1, 𝛼𝑠 is associated with localized modes, which in the case of metallic 

nanoparticle origins from the plasmonic response. On the contrary, the array's structural factor 

𝑆(𝒌||) accounts for the light scattering at the array, and therefore its resonant response is 

associated with distributed photonic modes. Further exploration of 𝑆(𝒌||) and its resonance 

properties in periodic arrays appears in the following sub-section. Following the discussion on 

the properties of 𝑆(𝒌||), the new resonances that emerge from Eq. (1.16), i.e. the SLRs, will be 

discussed. 

Diffraction directions and coherent scattering at the Rayleigh anomalies 

In nanoparticle arrays two main regimes of operation can be distinguished by the lattice spacing 

of the array. The first is the sub-diffraction regime, where the lattice spacing is sufficiently 

small to allow only zero-order forward and backward scattering. In this regime, the net optical 

response stems predominantly from the single nanoparticle scattering, with near field 

influenced variations due to the coupling between adjacent nanoparticles. The second is the 

diffractive regime, where the lattice spacing allows higher order diffraction, and richer 

manipulation of the forward and backward scattering light can be achieved [4,81]. In-between 

the two regimes exist the diffraction edge where light diffracts on the surface and long-range 

collective interactions play a vital role in the optical response. While this description holds for 

the first order of diffraction, higher orders will also satisfy the surface diffraction condition well 

inside the photonic regime. 

To examine these regimes, it is insightful to express the directions of diffraction from the array 

by means of the quasi-momentum conservation condition: 
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𝒌|| +  𝑮〈𝑚1,𝑚2〉 = 𝒌||,〈𝑚1,𝑚2〉
𝑡/𝑟  (1.17) 

Here 𝒌||,〈𝑚1,𝑚2〉
𝑡/𝑟

 is the parallel component of the transmitted/reflected wave vector of order 

〈𝑚1, 𝑚2〉, and  �⃗�〈𝑚1,𝑚2〉 = 𝑚1�⃗⃗�1 + 𝑚2�⃗⃗�2 is a general reciprocal lattice vector which is a linear 

combination of the primitive lattice vectors (b1, b2). The 〈𝑚1, 𝑚2〉 order will diffract to the far 

field only if the magnitude of 𝒌||,〈𝑚1,𝑚2〉
𝑡/𝑟

 is smaller than 𝑘. When this magnitude exactly equals 

𝑘, a spatial diffraction order radiates at a grazing angle to the surface, causing redistribution of 

the energy between the diffractive channels, a condition that is known as the Rayleigh anomaly 

(RA) [82]: 

 
𝒌|| +  𝑮〈𝑚1,𝑚2〉 = 𝒌𝑠 (1.18) 

Where 𝒌𝑠 = 𝑘�̂�𝑠 is the surface scattered wave and the vector �̂�𝑠 is a unit vector specifying the 

direction of the scattered surface wave vector. 

To obtain further insight on the origin and meaning of the RA condition, we will examine its 

emergence through the array's incident angle-dependent structural factor 𝑆(𝒌||). This factor is 

a complex parameter that is calculated by summing the Green's functions of the entire array, 

according to Eq. (1.12). One can simplify 𝑆(𝒌||) for the scalar case by accounting only for the 

relevant term in the 3 × 3 tensor 𝐴𝑖𝑗 . We note that each column vector in 𝐴𝑖𝑗 specifics the 

electric field emitted from a dipole that is aligned with the associated axis. Therefore, for the 

case where the polarization of the applied field is parallel to the plane of the array, 𝑆(𝒌||) can 

be expressed as follows: 

 𝑆(𝒌||) = ∑ 𝑒−𝑖(𝒌||−𝒌)𝒓𝑗 [
(1 − 𝑖𝑘𝑟𝑗)(3 𝑐𝑜𝑠2 𝜃𝑗 − 1)

𝑟𝑗
3

+
𝑘2 𝑠𝑖𝑛2 𝜃𝑗

𝑟𝑗

]
𝑗≠0

 (1.19) 

Where 𝜃𝑗 is the angle between the vectors 𝑬𝑖𝑛𝑐 and 𝒓𝑗. The sum over the complex terms, 

associated with the scattered fields from all particles, coherently builds-up exactly at the 𝑅𝐴 

condition. A typical example of the structural factor 𝑆(𝒌||) is shown in Figure 1.2 for 1D array 

at normal incidence. The parameters taken are: wavelength 𝜆 ∈ [900 𝑛𝑚, 2100 𝑛𝑚], lattice 

spacing 𝑑 = 1000 𝑛𝑚 and surrounding refractive index 𝑛 = 1.5. It can be seen that the 

magnitude of 𝑆(𝒌||) significantly increases in the vicinity of the RA at 𝜆 = 𝑛𝑑 = 1500 𝑛𝑚, 

with phase response varying over the entire 2𝜋 range. The width of the peak of 𝑆(𝒌||) is much 

narrower than the width of the resonance of 𝛼𝑆 of the single nanoparticle. 
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Figure 1.2. Typical trend of the array's structural factor 𝑆(𝒌||). The calculation corresponds to 1D array 

at normal incidence, with lattice spacing 𝑑 = 1000 𝑛𝑚 and surrounding refractive index 𝑛 = 1.5. It can 

be seen that the magnitude of 𝑆(𝒌||) significantly increases in the vicinity of the RA at 𝜆 = 𝑛𝑑 =

1500 𝑛𝑚, indicated by the gray dashed line. The associated phase varies over the entire 2𝜋 range. The 

width of the peak of 𝑆(𝒌||) is much narrower than the width of the resonance of 𝛼𝑆. 

   

Surface lattice resonance 

When the single nanoparticle resonance and the lattice RA are tuned to the same spectral range, 

coupling between the modes can play an essential role in the optical response of the array. This 

coupling gives rise to new resonances associated with surface waves that coherently mediate 

the interaction between the array components. In the case of plasmonic nanoparticles, these 

new formed resonances result from a photonic-plasmonic mode hybridization and are often 

termed SLRs. These hybridized resonances exhibit sharp spectral features and enable a variety 

of phenomena to take place [75]. 

The condition for appearance of a SLR can be obtained by rewriting Eq. (1.16) while explicitly 

separating 1/𝛼 and 𝑆 to their real and imaginary parts. For convenience we define Δ ≡
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ℜ{𝛼𝑠
−1 − 𝑆} and Γ ≡ ℑ{𝛼𝑠

−1 − 𝑆}, were ℜ and ℑ denote the real and imaginary parts, and obtain 

the following relation: 

 𝛼𝑒𝑓𝑓 =
1

𝛥 + 𝑖𝛤
 (1.20) 

From here, when Δ vanishes the SLR condition is met, with dissipation determined by Γ. 

Furthermore, two types of SLRs can be distinguished [83]; Type 1: occurs when the minimum 

of Δ is positive and then a single narrow Fano-type resonance appears at the RA condition. 

Type 2: occurs when the minimum of Δ is negative, and then the curve of ℜ{𝛼𝑠
−1} intersects 

twice the curve of ℜ{𝑆}. At this case two unequal collective resonances of 𝛼𝑒𝑓𝑓  are observed, 

while in between these resonances, at the RA, reduced extinction gap may form. 

1.2 Nonlinear metasurfaces 

Whereas linear optics and the manipulation of light have been studied since ancient times, the 

field of nonlinear optics emerged in 1960s with the seminal work of Armstrong and 

Bloembergen [84], following the invention of the laser. In the field of nanophotonics, the great 

success in the development of linear metasurfaces with unique optical properties [16,17,22–

27,72,85–87], naturally led to the flourishing research front of nonlinear metasurfaces. By 

judiciously nanostructuring the metasurfaces, while leveraging the field confinement and 

enhancement associated with their resonances, unprecedented control over the nonlinear 

interaction is obtain.  Specifically, great research strides with prominent success deal with the 

generation efficiency of the nonlinear processes [2,5,88–90], and the manipulation of spatial 

distribution of radiated fields in new frequencies [4,57,81,91–93]. The generation efficiency 

has surpassed that of naturally existing materials of the same dimensions [6,94], and nonlinear 

metasurface beam shaping, has reached impressive achievements of nonlinear wave control. 

By controlling the amplitude, phase, and polarization of the local nonlinear response, numerous 

manipulation schemes were demonstrated. Some examples include manifestation of a nonlinear 

Fresnel zone plate that focuses the generated nonlinear light [4], far-field generation of second 

harmonic (SH) Airy and vortex beams [81], generation of third-harmonic holograms from 

multilayer metasurfaces [91], novel cryptography technique based on nonlinear 

holography [92] and simultaneous control of spin and orbital angular momentum in second-

harmonic generation [93].  

In sub-section 1.2.1, we shortly review the basics of quadratic nonlinear interactions. Then, in 

sub-section 1.2.2 we focus specifically on these interactions in plasmonic metasurfaces. 
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1.2.1 Quadratic nonlinear interactions 

Fundamental for the nonlinear interaction of light with matter is the governing wave equation 

and the existence of nonlinear polarization terms. In the following, we introduce these concepts 

and the basics of the generation of light at new frequencies, specifically by quadratic nonlinear 

processes. 

The interaction of light, i.e. electromagnetic waves, and matter can be described generally by 

the wave equation3: 

 

𝛻2𝑬 −
1

𝑐2

𝜕2𝑬

𝜕𝑡2
=

1

𝜖0𝑐2

𝜕2𝑷

𝜕𝑡2
 (1.21) 

Where 𝑬 is the electric field representing the light, 𝑷 is the polarization in the material, which 

acts as the source for electromagnetic waves, and 𝜖0 is the vacuum permittivity. The 

polarization is induced by the external field, which is the light itself. The relation between the 

induced polarization of a material and the applied electric field is, in general, nonlinear. Their 

dependence, in the perturbative regime, can be described by a Taylor expansion: 

 

𝑷(𝑬) = 𝜖0(𝜒(1)𝑬 + 𝜒(2)𝑬2 + 𝜒(3)𝑬3 + ⋯ ) ≡ 𝑷(𝐿) + 𝑷(𝑁𝐿) (1.22) 

Where 𝜒(1), 𝜒(2) and 𝜒(3) are the linear, quadratic, and cubic susceptibilities, respectively, and 

higher-order susceptibilities are not shown. The linear and nonlinear terms of polarization, 𝑷(𝐿) 

and 𝑷(𝑁𝐿) respectively, are in accordance to the partition in Eq. (1.22) and the equation 𝑃(𝐿) ≡

𝜖0𝜒(1)𝑬. It is important to note that the susceptibility is of a tensorial form, and depends on the 

interaction type and participating frequencies [95]. The nonlinear terms in this expansion allow 

for the description of the generation of light at new frequencies and additional nonlinear 

phenomena that emerge from photon-photon interactions. 

Plugging Eq. (1.22) into the wave equation, we get 

 

𝛻2𝑬 −
𝑛2

𝑐2

𝜕2𝑬

𝜕𝑡2
=

1

𝜖0𝑐2

𝜕2𝑷(𝑁𝐿)

𝜕𝑡2
 (1.23) 

with 𝑛 = 1 + 𝜒(1) and 𝑷(𝑁𝐿) as the nonlinear term of the polarization. The case of quadratic 

nonlinearity can be demonstrated with a general fundamental field composed of two different 

frequencies, 𝜔1 and 𝜔2: 

 

𝑬(𝑡) = 𝑬𝟏𝑒−𝑖𝜔1𝑡 + 𝑬𝟐𝑒−𝑖𝜔2𝑡 + 𝑐. 𝑐 (1.24) 

 
3 Section 1.2.1 is written in SI system of units.  
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This kind of field induces a quadratic polarization of the form: 

 

𝑷(2) = 𝜖0(𝜒𝑆𝐻𝐺
(2)

𝑬𝟏𝑬𝟏𝑒−𝑖(2𝜔1)𝑡 + 𝜒𝑆𝐻𝐺
(2)

𝑬𝟐𝑬𝟐𝑒−𝑖(2𝜔2)𝑡

+ 𝜒𝑆𝐹𝐺
(2)

𝑬𝟏𝑬𝟐𝑒−𝑖(𝜔1+𝜔2)𝑡 + 𝜒𝐷𝐹𝐺
(2)

𝑬𝟏𝑬𝟐
∗ 𝑒−𝑖(𝜔1−𝜔2)𝑡

+ 𝜒𝑂𝑅
(2)

𝑬𝟏𝑬𝟏
∗ + 𝜒𝑂𝑅

(2)
𝑬𝟐𝑬𝟐

∗ + 𝑐. 𝑐. ) 

(1.25) 

Here we explicitly wrote the susceptibilities as tensors. The quadratic nonlinearity induces 

oscillating polarization at new frequencies, and as a result new waves are generated. The 

generation of waves at 2𝜔1 and 2𝜔2, is known as second-harmonic generation (SHG), the 

waves at 𝜔1 + 𝜔2 and 𝜔1 − 𝜔2 are referred to as sum-frequency and difference-frequency 

generation (SFG and DFG), respectively. In addition, a DC polarization is induced in a process 

named optical rectification (OR). All these processes, where fields at frequencies 𝜔1 and 𝜔2, 

are generating field at a new frequency, are called three-waves mixing (TWM). 

The quadratic nonlinear response of material with light is the fundamental interaction of many 

nonlinear phenomena including the mentioned TWM processes, Pockels effect and 

spontaneous parametric down conversion. These interactions and more provide the foundation 

for many applicative devices such as optical parametric oscillators (OPOs), optical parametric 

amplifiers, optical switches by photon-photon interactions, Pockels cells, entangled photons 

generation and more. 

One of the fundamental characteristics of quadratic nonlinear susceptibility is the requirement 

of local symmetry breaking. For centrosymmetric materials, Eq. (1.21) gives the condition that 

locally 𝑃(𝐸) = −𝑃(−𝐸). Consequently, as can be seen from Eq. (1.22), all of the even-order 

terms in the expansion for centrosymmetric materials must disappear. Therefore, quadratic 

interactions, for example, cannot be observed in bulk centrosymmetric materials. Yet, at the 

boundaries between materials the symmetry is broken, and even-order interactions are allowed.  

In section 1.2.2 we will reexamine this idea in the context of plasmonic nanoparticles, and see 

that the surface contribution to the SHG can result in substantial conversion efficiencies even 

when centrosymmetric materials, as gold, are considered. 

An important phenomenon that is relevant for all wave mixing effects in bulk nonlinear 

materials is phase mismatch. In general, due to chromatic dispersion in materials, each of the 

participating waves accumulates different phase along the propagation in the nonlinear 

medium. This results eventually in a phase between the interacting wave and in inefficient 

interaction. Therefore, for efficient nonlinear conversion, it is required that these phases will be 

matched [95]. For example, in collinear sum-frequency generation, the phase mismatch is given 

by Δ𝑘𝐿 = (𝑘3 − 𝑘1 − 𝑘2)𝐿 where 𝑘 indicates the momentum of each participating waves and 

L is the interaction length. The phase mismatch can be controlled and reduced to zero by several 

methods, including critical phase matching and quasi phase matching [95]. In the latter, the 
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nonlinear coefficient is periodically modulated thus introducing a lattice momentum that can 

be exploited for phase compensation. 

1.2.2 Nonlinear plasmonic metasurfaces 

The emergence of nonlinear plasmonic metasurfaces is commonly attributed to the paper by 

Klein et al. [2] in 2006, following the predictions of Sir John Pendry et al. [1]. In the work by 

Klein et al., SH emission was measured from metasurface composed of SRRs. It was shown 

that the linear resonances, both in the fundamental frequency (FF) and SH, were crucial for 

efficient emission of the SH. In addition, relevant to this work and to all other works of 

nonlinear metasurfaces, phase-mismatch concerns that usually exist in nonlinear interactions in 

bulk materials were removed thanks to the short interaction length. Since Klein's paper, the 

field of nonlinear metasurfaces is exponentially growing. The source of the nonlinear 

interaction was theoretically studied and several models were suggested and tested [3,89,96–

99]. In parallel, different types of metasurfaces were investigated, in order to better understand 

the phenomena and expand their capabilities. Prior to the work presented in section 2.1, some 

pioneering works have suggested that, similar to the linear regime, the collective nonlinear 

interaction over the array may influence the overall nonlinear optical response of the 

metasurface [100,101]. Further related insights are brought rigorously in section 2.1, along with 

short survey of more recent works in Chapter 3 . 

Quadratic nonlinear response of a single plasmonic nanoparticle 

On the level of the single plasmonic nanoparticle, several considerations were shown to be 

crucial for efficient quadratic nonlinearity. These include local symmetry breaking on the 

interface of the nanostructure, field enhancement due to excitation of LSPRs, asymmetry of the 

nanostructure which leads to efficient generation of nonlinear currents in a bright emission 

mode at the nonlinear output, and good spatial overlap between the localized modes 

participating in the nonlinear interaction. In the following we shortly review these concepts. 

The significant role of field enhancement in the efficiency of the nonlinear processes can be 

appreciated from the super-linear dependence of the nonlinear polarization on the electric field, 

as seen from Eq. (1.22). Specifically, the influence of linear resonances on the generation 

efficiency of the nonlinear fields is often treated qualitatively by the outcomes of the Miller’s 

rule [95,102]. This rule was introduced in 1964 by R. C. Miller, as an empirical rule that enables 

predicting the magnitude of the nonlinear second-order susceptibility in terms of the linear 

susceptibility. Later, is was shown that anharmonic oscillator model for the source of the 
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nonlinearity yields the same result of Miller [95]. Today, though it is understood that Miller’s 

rule cannot capture the full dynamics of nonlinear generation in metasurfaces, when correctly 

applied, it still gives valuable insights and enables fast calculations of the nonlinear outcomes 

from metasurfaces. By describing the linear susceptibility in the form of a Lorentzian, 

 

𝜒(1)(𝜔) ∝
1

𝐷(𝜔)
   , 

 

(1.26) 

with 𝐷(𝜔) ≡ 𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔, Miller’s rule states that the nonlinear second-order 

susceptibility will be 

 

𝜒(2)(2𝜔; 𝜔, 𝜔) ∝ [𝜒(1)(𝜔)]
2

 𝜒(1)(2𝜔) ∝
1

[𝐷(𝜔)]2𝐷(2𝜔)
 (1.27) 

Thus, the linear resonances, manifested by the conditions ℜ{𝐷(𝜔𝑖)} = 0 (𝑖 = 1,2 , 𝜔1 = 𝜔 

and 𝜔2 = 2𝜔), are crucial for determining the nonlinear response. As Eq. (1.27) can be 

obtained analytically by relying on anharmonic oscillator model, it is possible to extend this 

result to the general case of TWM, in-addition to nonlinear processes of higher orders. Under 

this model, local symmetry breaking should take place in order to obtain the even-order 

nonlinear response, as expected from the discussion in section 1.2.1. This naturally occurs at 

interfaces, and therefore the high surface-to-volume ratio of small particles make them highly 

attractive candidates for strong quadratic interaction.  

The above description enables predicting strong nonlinear interactions of plasmonic 

nanoparticles when excited at resonance. Nevertheless, in order to apply this model to describe 

the generation efficiency in plasmonic nanoparticles, one should note that 𝐷(𝜔𝑖) in Eq. (1.27) 

cannot simply describe the LSPRs condition. Qualitatively, the reason for that can be described 

as follows: Eq. (1.27) has the potential only to describe the local response at a certain point, 

much smaller than the optical wavelength, on the nanoparticle. The generation of nonlinear 

fields at all single points on the nanoparticle will determine the nonlinear currents and charge 

distribution on the nanoparticle. In turn, these will define the radiation patterns at the new 

generated frequencies. Therefore, in order to obtain bright emission of the generated nonlinear 

mode, the linear spatial field distribution at the participating modes should be considered. This 

concept is described more rigorously through the framework of nonlinear scattering theories, 

which enable quantitative calculation of the emitted nonlinear signal. For example, for SHG in 

a metal nanoparticle, one obtains: 

 

𝜒(2)(2𝜔; 𝜔, 𝜔) ∝ ∫𝜒⊥⊥⊥
(2)

𝑆

𝐸⊥,
2 (𝜔, 𝒓)𝐸⊥(2𝜔, 𝒓)𝑑𝑆 (1.28) 
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The susceptibility 𝜒(2)(2𝜔; 𝜔, 𝜔) is proportional to the mode mixing integrated over the 

surface of the nanoresonator. Here, 𝜒⊥⊥⊥
(2)

 denotes the nonlinear tensor element that mixes the 

normal field components, 𝐸⊥(𝜔) and 𝐸⊥(2𝜔), which correspond to the FF and SH mode fields, 

respectively. The integration is done only on the surface due to the intrinsic symmetry of the 

considered metal, which cause the local quadratic susceptibility to vanish in the bulk. Eq. (1.28) 

implies that good spatial mode matching is required for efficient SHG. Additional leading 

approach for simulating the nonlinearity in plasmonic nanoparticles, which served for 

performing the simulations in Figure 1.3(b), is based on the nonlinear hydro-dynamical model 

for electron gas [96].  

An important outcome of the above descriptions, which is captured by the different methods 

for simulating the nonlinearity, is that particles with centro-symmetric shapes, though having 

SH at the near field, will not radiate SH to the far field along the illumination direction. This is 

shown in Figure 1.3(a).  
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Figure 1.3. Generation and far-field emission of SH in symmetric vs. asymmetric nanoparticles. (a) 

Schematic illustrations of a rod illuminated at its FF dipole mode. The left and the right figures show the 

FF and SH response, respectively. The induced currents, charge distributions and far-field radiation 

pattern are shown. While the charge distribution and currents of the SH (right figure) indicate existence 

of SHG in the near field, the associated quadrupole radiation pattern will result in zero net emission to 

the forward direction. If the array periodicity does not support diffraction orders to the directions of the 

quadrupole emission, there will be no emission of the SH to the far field. This is shown in (b). (b) 

Simulations of the SH emission from a rod and a SRR, within an infinite array. The simulations, based 

on the nonlinear hydro-dynamic model, shows a single unit cell of an array. The field generated by the 

nonlinear currents, propagates away from the SRR and vanishes away from the rod [57]. 

Directions of nonlinear diffraction from a nanoparticle array 

The coherent buildup of nonlinear fields generated at different spatial points, dictates the 

directions of emitted radiation from two-dimensional nanoparticle array. This, so called spatial 
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nonlinear diffraction orders, can be found via quasi-momentum conservation considerations, 

and are given by the nonlinear Raman-Nath relations [103]. For example, for SHG: 

 

2(𝒌1)|| + 𝑮〈𝑚1,𝑚2〉 = (𝒌2
𝑡/𝑟

)
||,〈𝑚1,𝑚2〉

 (1.29) 

Where 𝒌1 and 𝒌2 denotes the FF and SH wave vector, respectively. (𝒌2
𝑡/𝑟

)
||,〈𝑚1,𝑚2〉

 is the 

parallel component of the transmitted/reflected wave vector of order 〈𝑚1, 𝑚2〉 of the SH. 

Similar to the linear case, the 〈𝑚1, 𝑚2〉 order will diffract to the far field only if the magnitude 

of (𝒌2
𝑡/𝑟

)
||,〈𝑚1,𝑚2〉

 is smaller than 𝑘2. 

Collective nonlinear response of a nanoparticle array 

Despite increasing interest in nonlinear effects, not much work was devoted to study collective 

nonlinear interactions. Linden et al. found that arrays of SRRs emit SH with varying efficiency 

according to different array spacing in the sub-diffraction regime [100]. These variations can 

be attributed to short-range interactions. In 2016, Czaplicki et al. showed that long-range 

interactions, causing a linear SLR, can result in ten-fold emission enhancement of the SH 

fields [101]. Further understandings regarding the influence of the interplay between the single 

particle and the collective array response in the nonlinear regime are presented in the Chapter 

2 , section 2.1, and in Chapter 3 , containing the summary and outlook of this thesis. The 

presented results extend the existing body of theoretical and experimental research in nonlinear 

plasmonics, and introduce a new framework to understand variations in the nonlinear optical 

response caused by both short- and long-range interactions.  

1.3 Slow light 

As will be seen in section 2.2, my research involves manipulation of the velocity of light via 

control over the collective interaction in metasurfaces. Therefore, this section presents the 

basics of slow light and time domain description of short pulses, necessary for the 

understanding of section 2.2. 

The velocity of light propagating at free space is 𝑐0 =  299,792,458 𝑚𝑠−1, fast enough to 

make 7.5 round-the-world trips in a single second. In dielectric media this velocity is reduced 

by a factor of approximately the refractive index, which is typically between 1 to 4, to ~𝑐0/𝑛. 

This ultra-high velocity is advantageous for communication applications and ultra-fast 

transmission of visual data. However, the possibility to reduce and control the light's velocity 

is beneficial for wide-range applications. A wide variety of application belong to all optical 
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time-domain signal processing [104,105], but it is also beneficial for enhancing nonlinear 

effects and miniaturizing numerous optical devices such as amplifiers, detectors, absorption 

modulators and wavelength converters [106,107]. In the last decades, mechanisms to reduce 

light velocity have been extensively explored, resulting in the flourishing research area of slow 

light [106,108,109]. This term refers to reduction of the group velocity of light. Though the 

motivation for slowing down the light stems mainly from its potential for advanced 

technological devices, the related mechanisms revealed exciting physics. For example, the 

intriguing quantum coherent effect of electromagnetic induced transparency (EIT) from atomic 

physics [110], which was proven attractive for implementing slow light devices, has found 

counterparts in nanophotonics [111–113], optomechanics [114–116] and condensed matter 

systems [117–119] supporting coupled resonances. 

The quantification of how slow the light is, often refers to the associated group velocity 𝑣𝑔 =

𝑑𝜔/𝑑𝑘, which describes the speed at which the pulse envelope propagates. Alternatively, one 

can examine the light's group delay 𝜏𝑔 = −𝑑𝜙/𝑑𝜔, in comparison to the group delay of the 

same configuration without the interaction producing the slow light. Here, 𝜙 is the accumulated 

phase of the light through the device. Using the group delay expression relaxes the hidden 

assumption of a homogeneous medium composed of sub-wavelength separated inclusions, 

which might exist when using the group velocity terminology. Therefore, in this thesis, while 

examining the slow light behavior of wavelength-scale spaced nanoparticle array, the related 

group delay will be calculated. 

The group delay can be quantified by measuring the spectral phase. This, in turn, is possible 

with spectral interferometric methods, as described in section 1.4. The  challenges in performing 

phase measurements for metasurfaces in general, and specifically when flexible illumination 

conditions are required, is addressed in Chapter 2 . Here, in order to elucidate the relation 

between the group delay definition in the spectral domain to its manifestation in the time 

domain, we will examine its role in describing a pulse that passes through a dispersive linear 

optical device. Assume a device that can be characterized by a complex transfer function, in 

the frequency domain, of the general form: 

 
𝐻(𝜔) = 𝑅(𝜔)𝑒−𝑖𝜙(𝜔) (1.30) 

The functions 𝑅(𝜔) and 𝜙(𝜔) are the amplitude and phase of 𝐻(𝜔), respectively. If we denote 

the field at the input of the device 𝐸𝑖𝑛(𝜔), then at the output the field will be: 

 
𝐸𝑜𝑢𝑡(𝜔) = 𝐸𝑖𝑛(𝜔)𝐻(𝜔) = 𝐸𝑖𝑛(𝜔)𝑅(𝜔)𝑒−𝑖𝜙(𝜔) (1.31) 

To get an insight of how the phase imparted by the device affects the light pulse, we assume 

𝑅(𝜔) = 𝑅, and transform Fourier the output pulse to the time domain:  
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𝐸𝑜𝑢𝑡(𝑡) =
1

2𝜋
∫ 𝐸𝑜𝑢𝑡(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

=
1

2𝜋
𝑅 ∫ 𝐸𝑖𝑛(𝜔)𝑒−𝑖𝜙(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 (1.32) 

By replacing 𝜙(𝜔) by its Taylor expansion around the carrier frequency 𝜔𝑐 of the incident 

pulse, we get: 

 

𝜙(𝜔) = ∑ 𝑏𝑛(𝜔 − 𝜔𝑐)𝑛

∞

𝑛=0

 (1.33) 

Where the expansion coefficients are: 

 

𝑏𝑛 =
1

𝑛!

𝑑𝑛𝜙

𝑑𝜔𝑛
|

𝜔𝑐

 (1.34) 

Plugging Eq. (1.33) into Eq. (1.32) we obtain for the pulse: 

 

𝐸𝑜𝑢𝑡(𝑡) =
1

2𝜋
𝑅 ⋅ 𝑒−𝑖𝑏0𝑒𝑖𝜔𝑐𝑡 ∫ 𝐸𝑖𝑛(𝜔)𝑒−𝑖(∑ 𝑏𝑛(𝜔−𝜔𝑐)𝑛∞

𝑛=2 )𝑒𝑖(𝜔−𝜔𝑐)(𝑡−𝑏1)𝑑𝜔
∞

−∞

 (1.35) 

From this equation we can interpret the effect of the various expansion coefficients 𝑏𝑛. 

Specifically, 𝑏1 ≡ −𝜏𝑔 = 𝑑𝜙/𝑑𝜔, leads solely to a shift of the pulse on the time axis 𝑡, without 

any deformations to the shape of its envelope. It is interesting to note the effect of other 

coefficients. The term 𝑒−𝑖𝑏0  is a constant phase shift (phase delay) having no effect on the pulse 

envelope, while the 𝑏𝑛 terms with 𝑛 > 1 produce a nonlinear behavior of the spectral phase, 

which changes the pulse envelope and chirp. 

1.4 Spectral interferometry 

The information carried by a light beam can be encoded in its various properties as amplitude, 

phase, spatial distribution and polarization. Conventional light detectors are sensitive only to 

the light intensity, due to response times much longer than the optical cycle. Therefore, the 

amplitude, spatial distribution and polarization of light can be easily measured, while 

characterization of the phase of light is typically a much more challenging task. This task is 

treated in the framework of the interferometry field. Specifically, spectral interferometry 

enables quantification of the frequency-dependent phase of light. This, in turn, enables 

determination of the phase term from Eq. (1.30), of the complex transmission (or reflection) 

transfer function of an optical element under inspection. In this section we shortly describe the 

basics of interferometry. That will serve as the background to my research on spectral 

interferometric microscopy, described in detail in section 2.3. For further reading on 
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interferometry, with specific emphasis on spectral interferometry, there are multiple relevant 

textbooks and papers [120–124]. 

The basic operation principle of interferometric methods is to convert the phase information, 

which cannot be directly measured, to amplitude information. This is done by interfering 

several light beams and measuring the resulting amplitude. Most commonly, two light beams 

are interfered, as done in the instructive example of Michelson interferometer (see Figure 1.4). 

Light emanating from a source is divided by a beam splitter into two beams, 𝐸1 and 𝐸2. 

Concentrating, for example, on measuring the complex transmission transfer function of a 

sample, the interferometer is set such that in one path the light passes twice through the sample. 

After being reflected from the mirrors, the two beams are recombined by the beam splitter to 

an intensity-sensitive detector. If we decompose the fields at the detector to amplitude and phase 

terms, i.e. 𝐸1 = 𝐴1𝑒−𝑖𝜙1 and 𝐸2 = 𝐴2𝑒−𝑖𝜙2, we can express the intensity measured by the 

detector as: 

 
𝐼 = |𝐸1 + 𝐸2|2 = |𝐸1|2 + |𝐸2|2 + 𝐸1

∗𝐸2 + 𝐸2
∗𝐸1 = 𝐴1

2 + 𝐴2
2 + 2𝐴1𝐴2 𝑐𝑜𝑠(𝛥𝜙) (1.36) 

Where Δ𝜙 = 𝜙2 − 𝜙1. The interferometer can be set such that, when arriving to the detector, 

the beams 𝐸1 and 𝐸2 differ only due to the interaction with the sample, which has a complex 

transmission transfer function 𝐻 = 𝑅𝑒𝑖ϕ. Therefore, we can express the beams as 𝐸1 =

𝐴1𝑒−𝑖𝜙1  , 𝐸2 = 𝐸1𝐻2, and obtain the intensity as function of the transfer function parameters: 

 
𝐼 = 𝐴1

2[1 + 𝑅4 + 2𝑅2 𝑐𝑜𝑠(2𝜙)] (1.37) 

The measured intensity is directly influenced by the phase of the sample. Using the Michelson 

interferometer the spectral phase of the sample, i.e. 𝜙(𝜔), can be obtained either by performing 

multiple measurements of the intensity for varying displacements of the movable mirror or, 

without any moving mechanical parts, by placing a spectrometer instead of the simple intensity 

detector [123]. The first method results in a time-resolved interferogram, while the second 

results in a spectrally resolved interferogram.  
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Figure 1.4. Michelson interferometer. Light emanating from a source is divided by a beam splitter into 

two separate paths. In one path the light passes twice through a sample with a complex transmission 

amplitude 𝐻 = 𝑅𝑒𝑖ϕ. After being reflected from the mirrors, the two beams are recombined by the beam 

splitter to an intensity-sensitive detector. By performing multiple measurements of the intensity for 

varying displacements of the movable mirror, the spectral phase of the light, induced by the sample under 

inspection, can be extracted.  

 

1.4.1 Common path interferometry 

Interferometers are highly sensitive to environmental noise. When this noise is affecting 

differently the paths of the interferometer its performances are greatly decreased. That problem 

is largely suppressed in common-path interferometers, which are made such that the interfering 

beams travel along essentially the same paths. To do this, sophisticated optical manipulation 

schemes are required. Examples include the Sagnac interferometer [125], Zernike phase-

contrast interferometer [126], the point diffraction interferometer [127], and various schemes 

for quantitative phase imaging [128]. 

 

https://en.wikipedia.org/wiki/Sagnac_interferometer
https://en.wikipedia.org/wiki/Zernike_phase-contrast_interferometer
https://en.wikipedia.org/wiki/Zernike_phase-contrast_interferometer
https://en.wikipedia.org/wiki/Point_diffraction_interferometer
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1.5 Methods 

1.5.1 Experimental methods 

Microscopic spectroscopy 

For linear characterization of the metasurfaces studied at this thesis, a microscopic spectroscopy 

setup was used, as depicted in Figure 1.5. The setup comprised a supercontinuum illumination 

source (NKT Photonics, SuperK compact), half-wave plate (𝜆/2) and a polarizer (𝑃) to control 

the beam power and polarization, sample on a motorized rotational stage (Thorlabs PRM1Z8), 

objective lens (Obj.), tube lens (TL), iris at the image plane, 4𝑓 system, polarizer (𝑃) and an 

imaging spectrometer (IS) with a cooled back-illuminated EMCCD detector (Andor Shamrock 

303i, Newton 970). 

The measurements procedure started with obtaining a focused and clear magnified image of the 

studied sample. The image was taken with the IS in a standard camera mode and with an open 

iris. Then, the iris was adjusted to transmit only light passing through the studied sample, and 

the IS was used in a spectrometer mode. For measurements that exceeded the spectral range of 

the IS (~200 − 1050 𝑛𝑚), fiber coupled spectrometer for the near-infrared (Ocean Optics 

NIRQ512, spectral range 900 − 1700 𝑛𝑚) was used. Transmission measurements were 

calculated according to 𝑇 =
𝐼𝑠𝑎𝑚𝑝𝑙𝑒−𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑑

𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑑
 , where 𝐼𝑠𝑎𝑚𝑝𝑙𝑒, 𝐼𝑟𝑒𝑓𝑒𝑟𝑛𝑐𝑒 and 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 are 

the spectrometer counts for light passing through the sample, reference, and with no light, 

respectively. The reference measurements were performed on the substrate without the 

metasurface. The background counts were reduced by cooling the detector of the spectrometer. 

Measurements with good signal to noise ratios were achieved by adjusting the acquisition rates, 

source power, and the spectrometer temperature to assure negligible influence of 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑑.  

 

Figure 1.5. Spectroscopy microscope setup used throughout this thesis. The setup comprised illumination 

source, half-wave plate (𝜆/2) and a polarizer (𝑃) to control the beam intensity and polarization, sample 

on a rotational stage, objective lens (Obj.), tube lens (TL), iris at the image plane, 4𝑓 system, polarizer 

(𝑃) and an imaging spectrometer.  
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Second harmonic generation measurements 

The SHG measurements were performed in the setup shown in Figure 1.5, with few 

modifications. First, long-pass and short-pass filters were placed prior to the sample and 

between the tube lens and 4𝑓 system, respectively. The spectral range operation of the filters 

was adjusted to block residual SH on the incident beam, and FF from entering the spectrometer. 

Second, a lens of 𝑓 = 200 𝑚𝑚 was used to slightly focous the incident beam on the sample. In 

addition, the FF source for the SHG measurements was a tunable pulsed femtosecond OPO 

pumped by a Titanium Sapphire laser (Chameleon OPO VIS, pulse width ∼ 140 𝑓𝑠, repetition 

rate 80 𝑀𝐻𝑧, spectral range 1000 − 1600 𝑛𝑚). The incident beam waist was focused down to 

minimal spot size of ∼ 50 𝜇𝑚 with an average power going up to ∼ 200 𝑚𝑊. The short pulses, 

and therefore the high peak power, used for excitation (up to ~20 𝑘𝑊), ensured strong SH 

signal from the metasurfaces. 

1.5.2 Numerical simulations 

In this thesis, mainly two types of numerical electromagnetic simulations were used: CDA in 

the frequency domain and finite-difference time-domain (FDTD). Together, these simulation 

tools enabled detailed exploration of the studied dynamics. For example, in the CDA it is natural 

to separately investigate the role of the single particle and the array response, and to 

differentiate between the applied and scattered fields. On the other hand, full-wave FDTD 

simulations enable also studying the complex field distributions on each particle and relaxing 

the dipole-like response assumption of the CDA. Detailed description of the CDA method is 

brought in section 0. Here, we shortly review the working principle of the FDTD, along with 

specific implementations used to capture the collective response of the studied plasmonic 

metasurfaces. Thorough description and analysis of the FDTD method can be found in several 

textbooks [129–131].  

The FDTD full-wave electromagnetic simulations were performed by a commercially available 

softer package (Lumerical FDTD). They enabled analyzing the near- and far-fields optical 

response of the studied resonant geometries over a broadband range, within reasonable 

simulation times. The idea of the FDTD algorithm is to solve the time-dependent Maxwell 

equations iteratively by discretizing time and space and replacing the associated derivatives by 

their central difference approximations. The basic operation principle can be demonstrated by 

considering the simplifying 1D case. Considering a dielectric medium described by permittivity 

𝜖 and permeability 𝜇, we start with Faraday's and Ampere's equations4: 

 
4 Section 1.5.2 is written in SI system of units. 
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−𝜇𝜕𝑡𝑯 =  𝜵 × 𝑬  

𝜖𝜕𝑡𝑬 =  𝜵 × 𝑯 

(1.38) 

The notation 𝜕 indicates a partial derivative. Considering a 1D space with variations only in the 

𝑥 direction, and assuming electric and magnetic fields only with 𝑦 and 𝑧 components, 

respectively, Eqs. (1.38) become: 

 
𝜇𝜕𝑡𝐻𝑦 = 𝜕𝑥𝐸𝑧  

𝜖𝜕𝑡𝐸𝑧 = 𝜕𝑥𝐻𝑦  

(1.39) 

Next, we discretize time and space of the sampled fields according to the following notations: 

 
𝐸𝑧(𝑥, 𝑡) =  𝐸𝑧(𝑚𝛥𝑥, 𝑞𝛥𝑡) = 𝐸𝑧

𝑞[𝑚] 

𝐻𝑦(𝑥, 𝑡) =  𝐻𝑦(𝑚𝛥𝑥, 𝑞𝛥𝑡) = 𝐻𝑦
𝑞[𝑚] 

(1.40) 

Where Δx and Δ𝑡 are the spatial and temporal steps size, respectively. Accordingly, the indices 

𝑚 and 𝑞 are integers that indicate the spatial and temporal location. The spatial and temporal 

steps satisfy Δ𝑡 ≤  
Δ𝑥

√𝑑𝑐0
 , with 𝑑 being the number of dimensions, according to Courant 

Condition [129–131], to ensure numerical stability of the algorithm. Next, the derivatives in 

Eqs. (1.39) are replaced by their central differences. The points in which these derivatives are 

estimated are chosen on a staggered grid to enable iterative solution. In the 3D case, the Yee 

grid is commonly used [132].  In the 1D case, this step results in the following approximations 

to Eqs. (1.39): 
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(1.41) 

By rearranging terms, we obtain the update equations of the FDTD: 
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These equations show the interleaved calculation in space and time of the FDTD method. By 

solving first the top equation in (1.42) for every magnetic-field node, and then the bottom one 

for every electric-field node, and repeating this scheme iteratively, the fields can be calculated 

over space and time. 

The above derivation shows the fundamental working principle of FDTD. In order to perform 

full 3D FDTD simulation of complex materials, many other issues should be addressed. Some 

important examples are the method in which energy is inserted to the simulation region, the 

perfectly matched layers (PMLs) or periodic boundary conditions, and oblique excitation 

source for broadband illumination. The commercial software used in this thesis implements 

advanced FDTD techniques and enables performing complex simulations with a graphical 

user's interface and additional user written scripts. Typical FDTD simulation configuration used 

throughout this thesis is shown in Figure 1.6. The orange frame indicates the box shaped FDTD 

region, in which the electromagnetic fields are solved. The top and bottom faces of this cube 

consist of PMLs, for finite boundary condition along the 𝑧 direction. The four side faces of the 

cube consist of periodic boundary conditions, corresponding to the infinite extent of the 

simulated array along the 𝑥 and 𝑦 directions. Inside the FDTD region a source, reflection 

monitor, the nanoparticle, and transmission monitor are ordered as depicted with approximated 

locations as indicated on the left. Additional monitors, as near field monitor, were added when 

necessary. The blue and purple arrows of the source indicate the polarization and direction of 

excitation, respectively. In order to analyze specifically the zero-order reflection and 

transmission of the array the fields at the corresponding monitors were decomposed to plane 

waves and filtered accordingly.  
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Figure 1.6. Typical FDTD simulation configuration of infinite plasmonic nanoparticle array. The orange 

frame indicates the cube shaped FDTD region, in which the electromagnetic fields are solved. The top 

and bottom faces of this cube consist of PMLs for finite boundary condition along the 𝑧 direction. The 

four side faces of the cube consist of periodic boundary conditions, corresponding to the infinite extent 

of the array along the 𝑥 and 𝑦 directions. Inside the FDTD region, a source, reflection monitor, the 

nanoparticle and transmission monitor are ordered as depicted with approximated locations as indicated 

on the left. Additional monitors, as near field monitor, were added when necessary. The blue and purple 

arrows of the source indicate the polarization and direction of excitation, respectively. The refractive 

index of the simulation region was uniform. 
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1.5.3 Fabrication techniques 

The metasurfaces that are used throughout this work, were fabricated using standard electron 

beam lithography as depicted in Figure 1.7(a). The substrates that were used are commercially 

available 1mm thick glass, coated with ~20nm Indium-Tin oxide (ITO). The substrates were 

cleaned by immersion and sonication in Acetone, followed by immersion and sonication in 

isopropyl alcohol (IPA) and drying under N2 flow. The clean substrates were spin-coated with 

polymethyl methacrylate (PMMA) A4 at 7000 RPM for 1 minute and baked at 180°𝐶 for 1 

minute. The PMMA layer acts as photoresist in the lithography process. The PMMA changes 

its molecular structure when exposed to electron beam. Using E-beam writer, Raith 150 Two, 

the desired two-dimensional structure of the metasurface was patterned on the PMMA layer. 

We use 20kV acceleration voltage and 20𝜇𝑚 size aperture to achieve the required resolution. 

The samples were developed in MIBK:IPA solution for 1 minute, in which the exposed PMMA 

is dissolved, and holes with the desired pattern remains in the resist layer. Thereafter, the metal 

layers are evaporated using an e-beam evaporator. The first 3 nm Titanium layer which acts as 

an adhesion layer is followed by a 37 nm layer of gold. The remaining resist is then dissolved 

in acetone, removing the metallic layers in the un-patterned regions. Figure 1.7(b) shows a 

scanning electron microscope image of a typical fabrication result. 

 

Figure 1.7. Metasurface fabrication [133]. (a) Fabrication technique. (b) Scanning electron microscope 

image of a fabricated SRR based nonlinear metasurface.  

Following the described fabrication process, the samples were covered by immersion oil (n = 

1.51), in order to obtain symmetric refractive index that enables the collective coherent effects 

to arise stronger. The covering was done by dropping type-F immersion oil on the sample and 

covering it with high-performance cover slip made from Schott D263 M glass. 
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In this chapter, we present key results that were obtained over the course of the current PhD 

work, in the form of three peer-reviewed scientific papers. In the first paper, in section 2.1, we 

demonstrate a new resonant condition in the nonlinear regime supported by collective coherent 

interaction. In addition, we present a general theoretical framework to calculate the optical 

response of nanoparticle arrays, while accounting for the inter-particle interactions. In the 

second paper, in section 2.2, we show how collective scattering at the array may induce tunable 

transparency and slow light windows. Finally, in section 2.3, we present an original 

characterization method to dynamically and accurately obtain the spectral phase of a 

microscopic sample, either in reflection or transmission. The method enables flexible 

illumination conditions, and therefore is particularly advantageous for characterization of 

metasurfaces supporting collective coherent effects. The findings and developments presented 

in this chapter promote the understanding of collective effects in nanophotonics platforms and 

will potentially lead to new and exciting developments.   
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2.1 Nonlinear Surface Lattice Resonance in 

Plasmonic Nanoparticle Arrays 
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2.2 Near-Infrared Tunable Surface Lattice Induced 

Transparency in a Plasmonic Metasurface 
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2.3 Spectral Interferometric Microscopy for Fast and 

Broadband Phase Characterization 
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 SUMMARY AND OUTLOOK 
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In this thesis we explored collective coherent interactions of light with metallic nanoparticle 

arrays. We specifically focused on several aspects: manifestation of the coupling between the 

constituting nanoparticles on the nonlinear optical response, harnessing the collective 

interaction to affect the temporal dynamics of short pulses, and development of a corresponding 

phase characterization tool that was essential for our studies. In the following, we shortly 

summarize each of the presented works, and then provide an outlook for this thesis.    

In section 2.1 we showed that collective interaction of nanoparticles can greatly affect the 

nonlinear response. Specifically, we demonstrated how coherent interaction at the SH 

frequency substantially enhance the nonlinear generation efficiency. This enhancement occurs 

according to a new resonant condition in plasmonic nanoparticle arrays, called nonlinear SLR 

(NL-SLR). The NL-SLR emerges from nonlinear photonic-plasmonic hybridization, which 

occurs when these modes spectrally coincide. The nonlinear photonic mode, called nonlinear 

RA, is a distributed mode associated with coherent diffraction of the nanoparticles along the 

surface of the array, at the nonlinear harmonic frequency. On the other hand, the plasmonic 

mode is a localized mode, emerging from the collective oscillations of the free electrons at the 

nonlinear harmonic frequency in each of the nanoparticles. To theoretically investigate these 

observations, we introduced a treatment based on extension of the CDA to the nonlinear regime. 

Specifically, for the case of infinite array we obtained a closed form solution for the second-

order polarization of the nanoparticles. The resulting expression generalizes the behavior of the 

nonlinear response described by Miller's rule [95,102] and predicts the existence of the NL-

SLRs. Furthermore, we also showed analogy between our nonlinear results and the historical 

Wood's anomalies observed in 1902 for linear diffraction from metallic gratings [134]. In 

addition, the presented theoretical treatment provides a framework to understand variations in 

the spectral nonlinear response of nanoparticle arrays also due to non-coherent coupling, e.g. 

near-field coupling, as was previously experimentally observed [100]. 

Following the publication presented in section 2.1 and the demonstration of nonlinear 

enhancement by linear SLR [101], numerous works have studied control and enhancement of 

the optical nonlinear response by of collective interactions [135–142]. For example, in O. 

Doron et al. [135] we obtained an explicit expression for the third-order polarization in 

plasmonic nanoparticle arrays and showed that judicious design cause an intriguing interference 

between the direct and cascaded third-harmonic generation; S. Chen et al. [138] demonstrated 

strong nonlinear optical activity induced by SLRs; and D. C. Hooper et al. [136] measured 450-

fold enhancement of the SHG thanks to collective effects.    

The second manuscript presented in this thesis, in section 2.2, deals with generation of tunable 

transparency and slow light windows in plasmonic nanoparticle arrays, induced by collective 

coherent interaction. We showed how coupling between the particles’ LSPR and the lattice RA 
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resembles the coupling dynamics of the resonances responsible for the well-known 

phenomenon of EIT. The corresponding spectral transmission line shape consisted of two 

transmission dips with a narrow peak in the middle that reaches over 90 percent transmission. 

Attractively, this peak is associated also with slow light behavior, as theoretically predicted by 

the CDA and experimentally measured by the interferometric method presented in section 2.3. 

The slow-down factor that we achieved was ~60 over a wide tunable spectral range of ~200 

𝑛𝑚, in the near-infrared spectral range. The presented mechanism to obtain tunable slow light 

with nano scale devices, i.e. metasurfaces, may find important realizations for on-chip all-

optical signal processing, sensing, displays and tunable filtering. 

Finally, in section 2.3, we introduced a novel interferometric method for fast and broadband 

microscopic phase characterization, based on common-path configuration. We experimentally 

demonstrated the new method by performing several challenging measurements with high 

accuracy. Among these, we measured the phase response of metasurfaces both in reflection and 

transmission. In addition, we showed the method's capability of dynamic measurements by real‐

time tracking the phase and amplitude of light transmitted through a nematic LC undergoing a 

phase transition to the isotropic state. The presented method is highly suitable for measuring 

collective coherent effects in metasurfaces, as it enables collimated illumination conditions, 

which are essential for the associated spectral features to appear. In addition, the opportunity to 

spectrally measure phase of dynamic processes with a stable and easy to align setup may be 

beneficial for the study of various biological, chemical, and physical processes. 

As an outlook, we wish to connect the research presented in this work to a broader scientific 

scope. The interaction of many, well characterized, individuals is the foundation of numerous 

systems spanning different branches of science, from earthquakes to ecosystems, neurons to 

neutrinos [143]. The investigation of these systems, typically referred to as networks, has 

revealed fascinating dynamics. For example, some intriguing phenomena that are being 

investigated include phase transitions and their temporal analogue [144], synchronization, 

chaotic dynamics and different stability states [143], pattern formation  [145], spontaneous 

symmetry breaking and chimera states  [146–148]. In the case of metasurfaces, there is a high 

degree of flexibility in the design of both the individual building block’s response, and the 

interaction between them. Therefore, we believe that inspiration from other research fields calls 

for scientific cross-fertilization  and exploration of analogous phenomena in metasurfaces [149]. 

Specifically, we outline some potentially attractive research directions. First, as networks often 

become extremely interesting when nonlinear dynamics govern their response, exploration of 

collective nonlinear interactions in metasurfaces, outside the regime of the undepleted pump 

approximation, can be highly attractive. This regime can possess nontrivial stability states, 

chaotic dynamics, and can also be beneficial for supporting mirrorless OPO by distributed 
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feedback mechanism and generation of entangled photon pairs. Furthermore, the inspiration 

from other networks, along with scientific curiosity, also motivates the investigation of finite-

size effects, temporal dynamics, active control, higher order nonlinear processes, and nontrivial 

topological states in metasurfaces governed by the collective interactions. 

On the technological level, understanding and controlling the complex collective dynamics of 

metasurfaces can be highly beneficial for a variety of applications, thanks to the associated 

high-quality factors, spectrally narrow linewidths and enhanced near fields. For example, the 

collective resonances have proved attractive for lasing [150–153], sensing [83,154–156], 

photovoltaics [157,158], modulators [159,160] and displays [161,162].  In addition, the 

associated dynamics has potential for applications in communications [163], 

optoelectronics [164], data storage [76,165] and all-optical signal processing [166]. Therefore, 

as more knowledge and control techniques in this thriving research area accumulate, along with 

improvement in fabrication methods to enable high-quality and large-scale fabrications, real-

life devices will potentially emerge, enabling the integration within and improvement of 

existing state-of-the-art developments.  

To summarize, we believe that the research area of collective dynamics in nanostructured 

materials has a promising future, from both the fundamental scientific and technological 

applicative aspects. By cross-field fertilization  and physical integration with other platforms 

for nanoscale light manipulation, this research area is expected to further grow, and yield 

significant discoveries and developments. 
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 תקציר

התקד התחוללה  האחרונים  העשורים  חומרים  במהלך  באמצעות  אור  ולעצב  לשלוט  שלנו  ביכולת  אדירה  מות 

משטחים. החומרים האלו לרוב בנויים ממערכים של חלקיקים מתכתיים או  -ממדיים, המכונים מטא- מלאכותיים דו 

דיאלקטרים, הקטנים מאורך הגל של האור. באמצעות תכנון שקול של צורת החלקיקים, החומר ממנו הם עשויים  

משטחים מאפשרים מזעור  -ך, ניתן להשיג שליטה מקומית במשרעת, מופע וקיטוב האור. לכן, מטאומיקומם במער 

חדשים. בנוסף, מידת החופש הגדולה בעיצוב התגובה האופטית    םשל רכיבים אופטיים קיימים ואף מימוש של יישומי 

 של החלקיקים, מאפשרת לבצע מחקר מקיף על מגוון רחב של תופעות פיזיקליות. 

משטחים נקבעת על פי התגובה של כל אחד מהחלקיקים המרכיבים את המערך, בנוסף  -התגובה האופטית של מטא

האחרונות, מחקרים הראו שהידודים קוהרנטיים כוללניים של החלקיקים במערך יכולים  להידודים ביניהם. בשנים  

לשחק תפקיד חשוב בקביעת התגובה האופטית של המערך כולו. הדבר גורם לתופעות פיזיקליות רבות ומעניינות עם  

 פוטנציאל יישומי גבוה. 

ם בסיסיים של ההידודים הקוהרנטיים הכוללניים  ניסיוני היבטיהן באופן  באופן תיאורטי והן  בתזה זו, אנו חוקרים  

. הרחבה  1חלקיקים מתכתיים. ספציפית, אנו מתמקדים בשלושה היבטים חדשניים של הידודים אלו:  - במערכים של ננו 

. האפיון רחב הסרט של המשרעת והמופע הקשורים  3. שליטה זמנית ותופעות של אור איטי. 2. לינארי-הלאלתחום 

 בתופעות אלו. 

, אשר משמשת כבסיס למחקר המקורי המוצג בתזה זו. ההקדמה מציגה את  1בפרק  ו מתחילים בהקדמה נרחבת  אנ

מטא  )חלק- הנושאים של  לינאריים  ולא 1.1  משטחים  )חלק  - (  )ח 1.2לינאריים  איטי  אור  תופעות של  (,   1.3לק  (, 

)חלק   ספקטרלית  והשיטות1.4אינטרפרומטריה  עבור    (,  שימוש  נעשה  בהן  הייצור  ושיטות  נומריות  הניסיוניות, 

תזה זו, אנו מציגים שלושה מאמרים שפורסמו בכתבי    חלק הארי של ,    Chapter 2  (. בפרק 1.5המחקר המוצג )חלק  

עת מדעיים. כל אחד מהמאמרים מתמקד בתופעות שונות הנובעות מהאינטראקציה הכוללנית של החלקיקים. תחילה,  

. אנו מדגימים  לינארי- הלא חלקיקים, בתחום  - אנו מציגים מחקר של ההידודים הכוללניים במערכים של ננו   ,2.1  בחלק

מקומיים ומצבים מפושטים על  , אשר נובע מצימוד של מצבים  לינאריים - הלאתנאי תהודה חדש להגברת האפקטים  

הידועות   חלקיק,  בכל  האלקטרונים  של  קוהרנטיות  בתנודות  הוא  המקומיים  המצבים  של  מקורם  המערך.  גבי 

יתר על כן, אנו    .אור קוהרנטי   פיזורבעוד המצבים המפושטים קשורים בגלים משטחיים הנתמכים על ידי    ,כפלזמונים

של מערכים   לינארית- הלא מציגים טיפול תיאורטי המאפשר לתאר את השפעת ההידודים של החלקיקים על התגובה 

של התזה, אנו מראים    2.2  בחלקבהמשך,  באופן כללי, ובפרט מאפשר לחזות ולנתח את התופעות המודגמות ניסיונית.  

בעלי תכונות    בספקטרוםכיצד פיזור אור קוהרנטי במערכים של חלקיקים יכול להשרות שקיפות ברת כיוונון ואזורים  

, אנו מציגים שיטת אפיון מקורית המאפשרת לקבוע באופן מדויק וכתלות בזמן את 2.3  של אור איטי. לבסוף, בחלק

. השיטה מאפשרת תנאי הארה גמישים,  ם, של אור המוחזר או מועבר  מדגמים מיקרוסקופייהספקטרוםהמופע לאורך  

ניות. הממצאים והפיתוחים  משטחים אשר תומכים בתופעות קוהרנטיות כולל-ולכן מתאימה במיוחד לאפיון של מטא

ולתרום רבות ליישומים כגון לייזרים,    פוטוניקה-שימושים חדשים בתחום של ננו   לאפשר המובאים בתזה זו יכולים  

 מאפננים, מסכים, תקשורת אופטית ואף לעיבוד אותות המבוסס על פוטונים. 
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