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Abstract   

Sensing ultrafast phenomena’s demands ultrafast sources in diverse spectral regimes. Such inherently 

broadband   source can  among  others  be generated using frequency  conversion of  an  ultrafast pulse.  

In this thesis, we developed a framework for nonlinear optical generation of ultrashort pulses through 

adiabatic frequency conversions evolution, incorporating both numerical evaluations and experimental 

validations. These include generalization of the frequency conversion process to the ultrashort regime, 

developing the numerical simulation for the nonlinear processes, and obtaining a robust general scheme 

for the design of adiabatic varying phase mismatch crystals also applicable to high-order QPM 

techniques. With the latter we design and investigate a novel SHG crystal with unmatched robustness 

under both environmental conditions and characteristics of the incoming pulse, demonstrate pulse 

shaping using spectral phase manipulations  done before the nonlinear crystal, and obtain a design of an 

efficient robust optical scheme for a DFG pulse compression, with the incorporation of  two photon 

absorption,  a parasitic effect that has been lacking in all previous research on adiabatic frequency 

conversion, and which was found to be of great importance. Finally, we present the concept of adiabatic 

Four Wave Mixing frequency conversion. We present a general propagation equation for four-wave 

mixing derived from Maxwell’s equations, capturing the full frequency and time domain nonlinear pulse 

propagation effects for wave-guided interactions. Last, we present that the obtained equations can be 

simplified to reveal the SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage 

in other two-level atomic systems. 
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1. Introduction 
 

Frequency generation processes has been a subject for a vast research in the field of nonlinear optics.  

The ability to alter the frequency of an input electromagnetic irradiance has been in the focus of diverse 

research areas since the first demonstration of frequency doubling right after introducing the laser [1]. It 

revolutionized the field of light matter interaction, allowing new ways for exploring atomic, molecular 

and condensed matter systems. Among those research areas one can name nonlinear spectroscopy, 

metallurgy, photoinduced dynamics, condensed matter dynamics, noninvasive background free 

diagnostics, and the generation of new color sources [2] [3] [4] [5].  

It is, however, generally difficult to obtain efficient and robust frequency conversion from a 

pump pulse to its harmonics for a broad range of colors in a single nonlinear crystal. This is mainly due 

the lack of phase mismatch (lack of momentum conservation) between the interacting waves, which 

conventionally can be compensated only for a narrow band of frequencies. Though, in the past, several 

methods were suggested to deal with the conversion of a broadband source, such as short birefringent 

crystals, multi-periodic modulation, chirp patterns [6] [7] [8] [9], temperature gradient manipulations 

[10] [11] or random oriented crystal [12]. Those indeed achieved very broadband conversion, but at the 

expense of limited conversion efficiencies. 

In recent years, a new direction in frequency conversion has emerged - adiabatic frequency 

conversion - a method that is based on adiabatic evolution of the nonlinear optics dynamics. The 

suggested method enables to overcome the tradeoff between conversion efficiency and bandwidth [13] 

[14]. Though it was first considered theoretically for SHG by Baranova [15], the initial extensive 

experimental research was performed in sum/difference frequency conversion (SFG/DFG) in the 

undepleted pump approximation, offering the use of SU(2) dynamical symmetry with the analogous 

mechanism of Landau- Zener transition [16].  

In the past few years, the fully nonlinear regime received a special attention. Research on 

adiabatic interactions with nonlinear dynamics as adiabatic OPA and OPO was conducted by Phillips et 

al.  [17] [18], Heese et al. [19] [20] [21] and Yaacobi [22]. In parallel, adiabatic DFG allowed an efficient 

conversion of near-IR few cycle pulses to an octave-spanning mid-IR pulses [23] [24]. 

A general, physical model of adiabatic frequency conversion in the fully nonlinear dynamics 

regime, was presented recently by Porat and Arie [25], later validated by Leshem et. al. [26] for the case 

of adiabatic SHG in the nano-second regime.  
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The adiabacity condition obtained in Ref. [25] is suitable for the CW regime or to a narrow-band pulses 

and cannot be used when analyzing ultrashort pulses with bandwidth not negligible compared to their 

central frequency. Yet, adiabatic evolution theory for ultra-short pulses is still absent, thus  further 

research as well as numerical simulations are required. 

In my master work, we develop the equations dictating nonlinear frequency conversion of any 

Three Waves Mixing (TWM) interactions in the ultrashort regime, suitable to wideband pulses where the 

pulse spectral width (FWHM) is not negligible compared to the pulse central frequency. It is later 

demonstrated, in section (3.2.1) that the obtained set of equations is a generalization of a recently 

published Eq. set [27], suitable to narrowband pulses.  In section (3.5) it is presented, that the equations 

obtained fulfill the conservation of energy. 

We develop the simulation procedure for the obtained set of equations in two manners: time 

domain manner (section 3.2), and spectral domain manner (section 3.1). Comparison between the 

obtained simulations performance demonstrated the supremacy of the time domain method in 

simulating the ultrafast nonlinear frequency generation process of broadband TWM interactions 

(section 3.4).   

A robust general scheme for the design of adiabatic varying phase mismatch crystals was 

develop for any TWM interactions, with the simulation presented herein used in an iterative manner 

(section 4.1).  When manufacturing limitations impose a limit on the maximal phase to be provided by 

the crystal, we modify the obtained design using high order quasi phase matching (QPM) method. The  

modification used in the case of high order QPM designs is presented in section (4.2), and simulation 

results demonstrate the supremacy of the adiabatic crystals over periodically poled crystals in terms of 

sensitivity to the QPM order.  

It was exhibited in the research presented in section (5) that two photon absorption (TPA), an 

aspect that has been lacking in all previous research on adiabatic frequency conversion, plays a 

significant rule in the nonlinear dynamics, also highlighting the ease in which parasitic effects can be 

incorporated into the simulation.  

The ultrafast frequency generation simulation therefore fully enable us to extend the continually 

expanding vast research on adiabatic frequency conversions: we used the simulation developed herein 

to design a novel SHG crystal, and experimentally investigated its performance under variation of the 

incoming pulse energy, pulse spectral and temporal width, and under temperature variation. High 

conversion efficiencies and great robustness of the adiabatic SHG design were both numerically 

predicted and experimentally validated in section (5). The broadband operation of the adiabatic SHG 
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crystal presented in section (5) enables to efficiently double broadband pulses, thus allowing us to shape 

and control the generated SHG pulse using phase manipulations done before the nonlinear crystal. By 

assigning a spectral phase of absolute value and   - step to the incoming pump pulse, we achieved a 

wavelength tunable intense pump-probe and amplitude modulation of the broadband SHG output. The 

experiment details and the comparison between the experimental results to the numerical evaluations 

is presented in section (6). Furthermore, we used the simulation to design an efficient robust optical 

scheme for DFG pulse compression (section 7). 

Finally, we present the concept of adiabatic Four Wave Mixing (FWM) frequency conversion. As 

adiabatic TWM was found to be advantageous over traditional frequency conversions, it is expected that 

FWM frequency conversion may also benefit from the adiabatic evolution. First, we present a general 

propagation equation for four-wave mixing derived from Maxwell’s equations, capturing the full 

frequency and time domain nonlinear pulse propagation effects for wave-guided interactions (section 

8.1). Last, we present that the obtained equations can be simplified in several conditions to reveal the 

SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage in two-level atomic 

systems (section 8.2).  

Such achievement can be useful in the design of extremely stable frequency conversion optical 

elements, aimed to perform at harsh environmental conditions as adverse temperatures, shocks, tensile 

stress and external pressure, as well in fundamental research in imaging microscopy and plasmonic 

nanostructures. Thus, appealing for a wide range of applications in medical procedures, avionics, 

satellites, and field-deployable communications systems. 
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2. Theoretical background – Frequency conversions 
 

When electromagnetic waves propagate through matter, the matter polarizes, as electromagnetic force 

exerted on the matter charged particles generates a dipole moment. 

 

 

 

 

 

  

 

The oscillating electromagnetic field generates an oscillating polarization radiating itself. The total 

generated electromagnetic field is governed by Maxwell equations [28]: 

0

(2.1)

(2.2)

H
E

t

E P
H

t t






  



 
  

 

 

A simple model for the generated polarization is the Lorentz model, where the interaction between the 

electron poor and rich regimes is assumed to be harmonic: 

2

int

1
(2.3) ( )

2
U d kd  

where d  is the displacement between the poor and rich electron regimes, and k  comes from the 

Coulombic interaction between the two. In that case, the force exerted on the molecule ,F E  is 

proportional to the displacement d via Hooke-law .F kd  As the generated polarization p d   is 

proportional to d , the generated polarization is linear to the electric field, hence denoted :LinearP  

0 1(2.4) LinearP E   

Figure 1. Schematic presentation of the generated dipole moment. The electric field acts on the molecule electrons cloud, 

creating an electron density gradient resulting is an electric dipole. d is the separation between the poor and rich electron 

regimes, and   is the regime charge. 

,E P d
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where 0  is the vacuum permittivity [F/m] and 1 is the electric field first order susceptibility. As the 

obtained polarization will oscillate in the same frequency as the incident field, insertion of  LinearP into 

equations (2.1)-(2.2) results in total electromagnetic field with the same frequencies as the incident 

field.    

 

 

 

 

 

 

Deviation between the actual interaction potential to a harmonic potential will result in polarization 

terms, denoted NonlinearP  that are not proportional to the incident electric field. The polarization, as a 

general function of the electric field, can be therefore expressed in terms of its powers: 

2 3

0 1 0 2 0 3(2.5)

Linear Non linear
P P

P E E E          

where j  is the j-order electrical susceptibility 

1

.

j
m

V



 
 
 

 New frequencies are generated by the 

nonlinear polarization terms, as multiplication of periodic functions changes their periodicity.  Up to 

third order nonlinear electrical susceptibility, the insertion of frequencies 1 2,  , as an example, may 

results (depends on the material electrical susceptibilities characteristics) in the generation of the 

following frequencies terms, differ in the polarization term responsible to them. 

Polarization term Generated frequencies 

Linear term -  first order susceptibility 1  1 2,   

Second order susceptibility 2  
1 2 1 2 1 22 ,2 , ,        

Third order susceptibility 3  
1 2 1 2 1 2 1 2 2 13 ,3 ,2 , 2 , 2 , 2              

 

The generation of third frequency 3 1 2     through second order electrical susceptibility 2  

between 1 and 2 , results in the following set of coupled equations [28]: 

Figure 2. Nonlinear polarization terms roots in the an-harmonic behavior of the interaction hamiltonian. 
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where the electric field is given by 
 3

1

1
( , ) ( ) . ,

2

j ji t k z

jj
E z t A z e c c

 


  jk  is the electric field wave 

number, given by ( )
j

j jk n
c


  and  3 2 1k k k k    is the phase mismatch between the 

interacting waves. The generation of third frequency through TWM can be done in three schemes:  

 

Figure 3. TWM schemes: DFG, SFG and SHG configurations 

 

2.1 SHG Scheme 
 

The equations dictating SHG are [28]: 

 

*2
2

22 2

2

( )
(2.7) ( ) ( )e

( )
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i k z

i k z

dA z
i A z A z

dz n c

dA z
i A z

dz n c


 








 

 

  

  





 

 

In the undepleted pump approximation, we assume that the pump intensity merely changes due to the  

interaction between its second harmonic. In that case, the process conversion efficiency can be easily 

deduced: 

2 2
2 2 22 0

2 2 2

2

2
(2.8) ( ) sinc

2

k
I z I z z

n n c
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Figure 4. SHG dependence with the optical axis and the phase mismatch. (a) Second Harmonic dependence with the optical 
axis. Conversion and back-conversion of the second harmonic is observed. (b) Experimental demonstration of inset a.            

(c) Conversion efficiency dependence with phase mismatch. Two sided main lobe width is given by 2 / ck L  , where 

cL  is the crystal length. 

 

It is presented that the second harmonic intensity constructively interferes up to a coherence length 

denoted ,cl
k





   afterwards destructively interferes up to 2 cl  and vice-versa. The phase mismatch 

k  therefore imposes a limit on the generated second harmonic, as longer crystals do not exhibit 

better conversion efficiencies. In Fig. 4 inset (c) it is presented that the conversion process impose a 

tradeoff between the conversion efficiency and the phase mismatch of the interacting waves. For 

example, a 2mm standard BBO type I crystal designed to double 800nm, has a main lobe 2 sided width 

equivalent to deviation of 3nm from each side of its operational wavelength: 797nm-803nm. For further 

impression, we present the conversion efficiency dependence with wavelength and temperature of 

1mm periodically poled SLT crystal, designated to double 800nm: 

 

 

 

 

 

 

 

The operational wavelength FWHM is 0.1nm   and the operational temperature FWHM is 

2[ ]oT C  . It is possible to work around the second lobe of the presented design (centered around 

800.3nm) with increased robustness in wavelength and temperature, but at the expense of lower 

conversion efficiency.  It is seen that conversion efficiency for such simple designs is not robust to large 

2

c

k
L


 

Figure 5. Periodically poled SLT conversion efficiency sensitivity. (a) Conversion efficiency dependence with wavelength. 
(b) Conversion efficiency dependence with temperature. 
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deviation in wavelength nor in temperature, and the tradeoff between high conversion efficiency and 

robustness is observed. 

2.2 DFG/SFG Schemes 

We investigate the generation of third frequency 3  through DFG between 1  and 2  in the un-

depleted pump approximation, where the intensity of 2  merely changes due to the interaction 

between the waves, i.e 2 1 3( ) ( ), ( )I I I   . The undepleted amplitude 2A  is termed pump, and the 

amplitudes 1 3,A A  are termed signal and idler respectively. The following set of equations is obtained:  

 

*1 2 1
2 3

1

3 2 3
2 1

3

( )
(2.9) ( )e

( )
( )e

i k z

i k z

dA z
i A A z

dz n c

dA z
i A A z

dz n c

 

 

  

 





 

 

The solution for the above set of equations for constant nonlinear electrical second order susceptibility, 

where the initial conditions are 
1 1( 0) (0)I z I  and 

3( 0) 0I z   is given by:  

 

2 2 2 2
2 2 2 2 2

3
1 1 3 12 2 2 2

1

cos sin
2 2

(2.10) ( ) (0) , ( ) (0)

k k
z k z

I z I I z I
k k

 
 



  

         
       

      
      

 
   

 

 

where 2 1 3 1

2

1 3

2
[ ]

k k
A m

n n


   is the coupling coefficient and n  is the material refractive index. We see 

that in the presence of constant phase mismatch k  between the interacting waves, conversion and 

back conversion of the generated idler occurs. 

 

 

   

 

 

 

 

 
Figure 6. Normalized idler intensity as function of the propagation distance for various phase mismatches. It is demonstrated 

that conversion efficiency is decreased in a sinc-wise manner, having its maximal value for 0k  . 
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The same tradeoff between conversion efficiency and phase mismatch discussed in section (2.1) for the 

SHG scheme also exist here, as conversion efficiency descends with ascending k , hence sensitive to 

small variations in the idler/signal wavelengths, as well as variations in environmental conditions as 

temperature. Using Eq. set (2.9), one can deduce that in the undepleted pump regime, the photon flux 

of both the idler and the signal waves remain constant: 

31(2.11) 0
dNdN

dz dz
   

where 1
1

1

( )I z
N


 and 3

3

3

( )I z
N


 . The above equation, also known as the photon number conversion 

rule, or Manley-Rowe relations [28] implies that the annihilation of photon (resp. creation) at 3  is 

automatically associated with the creation (resp. annihilation) of one photon at 1 . It is therefore 

informative to define the frequency generation conversion efficiency to be the ratio between the 

photon flux of the generated idler and the incoming signal photon flux: 

 3

1

(2.12) ( )
( )in

N z
z

N z
   

which implies that the conversion efficiency in the undepleted pump regime is given by: 

2 2
2

2

sin
2

(2.13) ( )

1

k
z

z
k
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2.3 Phase Matching  

In the absence of phase mismatch mechanism, significant generation of high-order harmonics is lacking, 

as waves generated at locations distanced by cl  destructively interfere. Phase matching techniques are 

therefore critical when high conversion efficiency is desired, all designated to maintain the energy flow 

direction towards the high order harmonics. Several methods exist in order to effectively diminish the 

phase mismatch between the interacting waves, such as type I and type II phase compensation in 

birefringent crystals and QPM techniques. Using birefringent crystals, the phase mismatch can be zeroed 

if the waves polarization relative to the crystal primary axes are carefully chosen. In the case of phase 

matching type I, the phase mismatch for SHG process 

    
2

2 ( ) (2 ) 2 ,k k k n n
c


        can be 

diminished using different polarizations for the pump and its 

second harmonic. As the k-vector projection on the extra-

ordinary defines the extraordinary index of refraction 

according to the index ellipsoid

   2 2 2 2 2

0cos ( ) sine en n n        ,   can be chosen 

such that  2

e on n    for negative uniaxial crystal, and 

  2

e on n   for a positive uniaxial crystal. In the case of 

phase matching type II, the pump electric field contains both 

the ordinary and extraordinary polarizations, changing the 

required cutting angle   such that    2 .e o ek k k      

The problem with the presented methods is that the photon 

flux of the extraordinary polarization differs from its k-vector, 

therefore creating a spatial walk-off between the ordinary 

and the extraordinary beams, hence limiting the maximal 

possible conversion efficiency.  

Another method is the QPM method, where in a process known as poling [28], strong electric 

field applied on ferroelectric crystal allows the modification of the nonlinear electrical susceptibility sign

2 , therefore enables us to design the second order susceptibility dependence with the optical axis: 

  2 2( ) sign cos ( )gz K z z  . ( )gK z , the grating momenta, is the z dependent spatial frequency in 

which 2 ( )z  fluctuates between 2  to 2 . It is possible to maintain the direction of the energy flow 

if the sign of 2  flips with each domain width equal to ,cl in other words when the crystal is periodically 

poled with .gK k   In that manner, waves generated at locations distanced by cl  are added an extra 

 - phase and interfere instructively. To understand how this modulation facilitates phase-matching 

Figure 7. The k-vector direction projection on 
the primary axis defines the propagation 
refractive indexes. 
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let’s consider periodic modulation with period 2 2

2
: ( ) cos

z
z sign


 

  
    

  
. Expanding 2 ( )z  

using Fourier series results in the following: 

2 2

2 2
(2.14) ( ) sin exp

2m

m m
z i z

m

 
 







    
     

    
  

Ignoring the cumulative effect of higher orders than 1m  , and substituting Eq. (2.14) into Eq. set (2.9) 

yields: 
2

*1 2 1
3 22

1

2
*2 2 2

3 12

2

2

3 2 3
1 22

3

( ) 2 2
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( ) 2 2
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dz k c

dA z
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As seen, the phase mismatch parameter is added the nonlinear susceptibility spatial frequencies.  By 

choosing
2

gK k


  


, it is possible to compensate the phase mismatch between the interacting 

waves. Designing the susceptibility modulation period   to zero the phase mismatch term in equations 

(2.15) using the first Fourier coefficient ( 1m  ) is termed QPM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. SFG scheme (a) Phase mismatched SFG. The generated sum frequency is converted and back-converted, as waves 
generated at locations distanced by coherence length destructively interfere.  (b). Quasi phase matched SFG. The generated sum 
frequency instructively interfere all over the optical axis. Graph is taken with permission from Ref. [13]. 
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Zeroing the phase mismatch using Fourier term of order m   is called QPM of order m, namely

2
m k

 
  

 
. In other words, In the case of periodic poling, the grating momenta required for QPM 

of order ,QPMN can be expressed using the first order QPM grating momenta:  

11
(2.16) QPM QPMN N

g g

QPM

K K
N


  

which modifies in the case of arbitrary phase mismatch designs in section (4.2): 

 
1

(2.17) ( )

QPM

QPM

N

N g

g

QPM

K z
K z

N



  

where ( ) QPM

c

N

g LK z is the QPM grating design of order QPMN  designated to a crystal length cL . 

2.4 Adiabatic Frequency Conversions  

Following the notation 31

1 1 3 3

1 2 3 2

,
kk

A A A A
A A 

  , Eq. set (2.7) becomes:  

1
3

*

3
1

(2.18)
2

2

i kz

i kz

dA
i A e

dz

dA
i Ae

dz





 

 





 

where  is given by 2 1 3

2

1 3

2 k k
A

n n


  . As noticed by Suchowski et al. [14], the above system possess a 

SU(2) symmetry with complete analogy to other two states systems, such as nuclear magnetic 

resonance (NMR), polarization optics and the interaction of coherent light with a two-level atom, given 

as an example: 

 

    
 
      
         
 
 
 
 
 

 

 

0

0

0

*

0

(2.19)
2

2

i t tg

e

i t te
g

da
i a e

dt

da
i a e

dt

  

  







Figure 9. The interaction between two level atom and coherent light. A photon centered around p  interacts with an atom 

having energy gap  p

E



  .  The interaction strength is determined by Rabi frequency 0

p
  , where   is the 

dipole moment and p is the pump electric field.  



 Efficient adiabatic frequency conversions for ultrashort pulses 

18 

The electric field amplitudes 1 3,A A  are analogous to the ground and excited amplitudes ga and ea

dictating the wave function e ga e a g   . The interaction strength   is analogous to Rabi-

frequency 0  and the phase mismatch k  is proportional to the detuning .   

It is therefore feasible to adopt the vast research that has been conducted in the field of coherent 

quantum control to the field of frequency conversions, allowing us to find new ways to efficiently 

convert broadband sources. We define the adiabatic basis, which is the basis of the system’s 

eigenvectors: 

 

 

where 2 2
1 1 3 3,

k k
i z i z

C Ae C A e
 



  are the unperturbed system eigenvectors. The dynamics of the 

adiabatic states can be derived: 

 

1 1

3 3

( )1
(2.21)

2 ( )

B Bi zd

B Bdz i z

 

 

    
     

    
 

where 2 2( )z k     and the mixing angle   obey 
( ) ( )

sin( ) ,cos( )
( ) ( )

z k z

z z


 

 


   and 

 
( )

tan
( )

z

k z


 


. In adiabatic process, the system stays in one of its eigenvectors throughout the entire 

interaction. The condition for adiabatic frequency condition is therefore given by  ( )i z  . In the 

case of constant ,  the adiabatic criterion is manifested in the following form: 

 
3/2

2 2

(2.22)
kd k

dz





 
 

The condition puts a limit on how fast the phase mismatch parameter can vary along the optical axis in 

order to get good conversion. It is also clear that the conversion process is more adiabatic when the 

pump power is increased ( increasing  ). To understand how the variation of the phase mismatch 

parameter ( )k z facilitates frequency conversion, let’s assume that 
( )

0
( )

in

in

k z

z


 and 

( )
0,

( )

out

out

k z

z



where ,in outz z are the crystal input and output facets locations respectively. In that case, the mixing 

angle   varies between   to 0 as the adiabatic states in Eq. (2.20) tends to different unperturbed 

states: 

1 1

3 3

cos sin
2 2

(2.20)

sin cos
2 2

B C

B C
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3 1 1 3 1

1 3 1 3 3

0

0

cos sin
2 2

sin cos
2 2

in out

in out

z z

z z

C B C C C

C B C C C

  

  

 

 

 

 

   
      

   

   
        

   

 

If the system starts in one of its eigenvectors, and the adiabatic criteria in Eq. (2.22) is fulfilled, the 
system stays in the same eigenvector. As the adiabatic states tends to different unperturbed states via 

the z-dependent mixing angle ,  the population gradually passes from 1C  to 3C (or vice versa), and 

complete population transfer is feasible.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A grating possessing a varying phase mismatch 

( )k z  is inherently broadband,  as diverse  TWM 

interactions differ in their phase mismatch can be 
efficiently generated at different locations on the 
optical axis. The broadband operation of such an 
adiabatic design was experimentally 
demonstrated in Ref. [23], where 680-870nm NIR 
pulse were efficiently down converted into an 

octave spanning 2 5 m  MIR pulse using a 

1047nm pump.  

Figure 10. Adiabatic evolution. By adiabatically changing the phase mismatch parameter along the crystal optical axis, 
complete population transfer is feasible. In other words, complete conversion between the signal and idler photon flux, 
defined in Eq. (2.11). 

Figure 11. Main figure: Conversion efficiency map as a 
function of the generated wavelength  (y-axis) and the 
location along the optical axis (x-axis). The pump intensity is 

𝟖. 𝟏𝑮𝑾/𝒄𝒎𝟐. The upper panel shows the conversion 
efficiency for several wavelengths along the propagation 
axis. As seen, all are designed to have adiabatic trajectories 
for efficient conversion from near IR to mid IR. At the output 
facet of the nonlinear crystal (L = 2 cm), high conversion 
efficiency is achieved for the 1300-5500 nm spectral range. 
Graph is taken with permission from Ref. [23]. 



 Efficient adiabatic frequency conversions for ultrashort pulses 

20 

2.5 SU(2) geometrical representation – Bloch sphere 

 

The geometrical representation used to visualize the dynamics of spin ½ system by F. Bloch [29], R. 

Feynman for atomic systems [30] and Poincare in polarization optics can be adopted to the field of 

frequency conversions. In Bloch sphere presentation, the dynamics of SFG (or alternatively DFG) 

dictated by Eq. set (2.18) is visualized by a unit vector SFG  capsulated by the sphere. The state vector 

SFG

SFG SFG

SFG

U

V

W



 
 

  
 
 

, given by  

* *

3 1 1 3

* *

3 1 1 3

2 2

3 1

SFG

C C C C

i C C C C

C C



 
 
  
 
  

 obeys the precession equation: 

 

                

 

                                            (2.23) SFG
SFG

d
g

dz


   

 

 

 

 

 

 

The torque vector, given by (Re( ), Im( ), )g k   determines the evolution of the nonlinear 

interaction. While the south pole of the sphere (0,0, 1)SFG   corresponds to 3 0,C   i.e zero 

conversion, the north pole (0,0,1)SFG  corresponds to full conversion.  An efficient conversion 

process will be therefore visualized by a gradually rising state vector, as conversion efficiency depends 

on the state trajectory on the W axis 
2

3

1
.

2

W
C


   

In the undepleted pump approximation where   is constant, the SFG (or DFG) dynamics in the case of 

constant phase mismatch k  are given by the precession equation with constant torque vector .g  The 

state vector trajectory is therefore a periodic circle with period 
2 2

z
g k

 



 
  

 
, as already 

stated in Eq. (2.10). In the case of zero phase mismatch k , the torque vector lies in the UV plane, and 

the state vector trajectory passes through both the south and north poles. In other words, full 

conversion and back conversion of the generated idler occurs. When the phase mismatch is not zero, 

and the system starts without SFG/DFG present (that is to say in the south pole), the state vector 

trajectory can never pass through the north pole, and full conversion is therefore impossible. 

Visualization of the described trajectories is exhibited in Fig. 12.  

 

Figure 12. The precession equation. Visualization of the state vector SFG precession around the torque vector  .g  
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The state vector trajectory is completery different in the adiabatic regime. While the phase mismatch 

parameter gradually changes between negative values to positive ones (as described in section 2.4), the 

torque vector  g  climbs from the south pole towards the north pole. Since the state vector trajectoy 

precess the torque vector ,g  the state vector itself gradually climbs towards the north pole, and high 

conversion efficieny is achieved. The transition between low conversion efficienies towards high ones 

occurs in the regime / 1k  , where the precession vector g  lies in the UV plane and the state 

vector moves from the south hemisphere to the north one.   

 

 

 

 

 

 

 

 

  

Figure 13. (a)  Bloch Sphere visualization for the case of constant phase matching and constant coupling strength 𝜿. Blue 
trajectory - ∆𝒌 = 𝟎.Red trajectory - ∆𝒌 ≠ 𝟎.  (b) State vector trajectory on the W axis. Conversion and back conversion of the 

generated idler is presented for the described trajectories via 𝜼 =
𝟏+𝑾𝑺𝑭𝑮

𝟐
, with accordance to Eq. (2.10).  Graphs are taken 

with permission from Ref. [14]. 

 

Figure 14. Bloch sphere visualization for adiabatic frequency conversion. (a) State vector trajectory in the adiabatic 
regime gradually climbs between the south pole (zero efficiency conversion) towards the north pole (full conversion 
efficiency). (b) Phase mismatch dependence with the optical axis in the adiabatic regime. (c) Conversion efficiency 
increases with propagation length.  The transition between the southern hemisphere to the northern one effectively 

occurs within ,effL   centered around ∆𝒌 = 𝟎. Graphs are taken with permission from Ref. [14]. 
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3. Spectral and temporal numerical simulation of TWM  
 

Simulating the nonlinear interaction between ultrafast pulses inside the grating crystal was done in two 

presentations. In the first one, the common continuous wave (CW) amplitude equations describing 

mono-chromatic sources were generalized to deal with wideband sources. In that method, the nonlinear 

interactions are described in terms of the fields spectral amplitudes, while in the second method the 

nonlinear interactions are described using the pulses time-envelopes. In what follows it is shown that 

although mathematically equivalent, the time domain presentation surpasses the frequency domain 

presentation in terms of calculation time and ease of calculation.  

3.1 Frequency domain based simulation  

3.1.1 Equations derivation in the frequency domain  

 

We present the equations of an input pulse being inserted into a media with chirped second order 

nonlinear susceptibility. Denoting the fields amplitudes with jA , where j denotes the frequency j  , the 

electric field is written in the following manner:  

 
(3.1) ( ) e ( , )j ji t k z

jj
E A z F x y f

 
   

where jk  is the electric field wave number, given by ( )
j

j jk n
c


 , z is the optical axis of the crystal, 

1j jf f f   is the simulation resolution in the frequency domain, and ( , )F x y  is the electric field 

mode profile obeying Helmholtz equation: 
2

2 2(3.2) ( , ) ( , ) 0
j

t j

n
F x y k F x y

c

  
        

 . 
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Detailed derivation of the equations dictating the frequency conversion process is presented in appendix 

A.  

To summarize, the equations obtained are the following: 

    

   

    

2
*2

2

2

2

2

2 *
2

2

( , ) ( )
(3.3) e ( , ) e * ( , ) e

( , ) ( )
( , ) e ( , ) e

( , ) ( )
( , ) e ( , ) e

j m k

jk m

jm k

ik zI j j jk z jk z

S m P k

j

ik zik z ik zP k k
S m I j
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ik zik z ik zS m m
p k I j

m

dB z f z
i B z f B z f f

dz k c

dB z f z
i e B z f B z f f

dz k c

dB z f z
i e B z f B z f f

dz k c

 

 

 

  





 

 

 

 

with the following notations: 

 ( , )jA z f - Amplitude of pulse [I, P,S]  at frequency 
jf , where [I,P,S]   denotes the 

Idler (I), pump (P) and signal (S) pulses. 

  - Normalization constant defined by the electromagnetic field mode profile:  

2

2

( , ) ( , )

( , )

F x y F x y dxdy

F x y dxdy
 




 

 B A   - Normalized pulses amplitudes. 

 f  - The spectral simulation resolution defined by 1j jf f f   . 

 The symbol *   between two arguments *gf defines the discrete convolution operation: 

 * [ ] [ ] [n ]
k

f g n f k g k   

 The symbol   between two arguments gf defines the discrete correlation operation: 

  *[ ] [ ] [ ]
k

f g n f k g n k   
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3.1.3 Simulation procedure in the frequency domain 

I. Pulses definition: 

 

In section (10.3.2) it is shown that the pulse energy density is given by: 

2

2

0

( )
(3.4) B( , )

2

d
d

eff

E J n f
E z f df

A m 

 
  

 
  

where 0  is the waves impedance (377Ω) and ( )n f  is the frequency dependent refraction index. We 

start by defining the spectral pulses shape and normalizing it such that Eq. (3.4) is obeyed for each of the 

pulses with the corresponding energy density: 

0

2

2
(3.5) ( ) ( )

( ) ( )
Normalized

j j

j

Ed
B f B f

n f B f f

 



 

The pulses time duration is then determined by the pulses spectral phase. As an option, a parabolic 

spectral phase can be applied to broaden the pulse [28]: 

 
2

(3.6) ( , ) exp ( )
2

in center Normalized

Chirp
B z f i B f 

 
   

 
 

 Where center is the central pulse frequency and inz  is the crystal entrance facet position. 

II. Numerical integration 

Defining the pulses amplitudes 

( , )

( , )

( , )

S

P

I

B z f

B B z f

B z f

 
 


 
 
 

 and the nonlinear Eq. set (3.3) by ( , , )G B z f , the 

numerical integration is performed using 4’th order Runge-Kutta method in the following manner: 

1

( , )
(3.7) ( , , ), ( )

0,1,2,3....

( , , )

in in

n n

B f z
G B f z B z B

z

n
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n n
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h h
k G B k z

h h
k G B k z

k G B hk z h

h
B B k k k k z z h 

 
   

 

 
   

 

  

      

 

where h  is the spatial resolution of the optical axis, n indexing the position on the optical axis grid, and 

inz  is the crystal entrance facet position. 

III. Time domain-presentation  

 

The time domain presentation of the simulation is obtained using inverse Fourier transform: 

 ( )E (x, y,z, ) (x, y) (z, )e e
i ti t i zt F e A df    

  


 



 
  

 
  

where the subscript   stands for the signal, pump and idler pulse. In other words: 

   ( ) 1 ( )(3.8) ( , ) ( , ) e e ( , ) e
i ti z i zB z t B z df B z    
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3.2 Novel time domain based simulation 

3.2.1 Equations derivation in the time domain  

 

The equations describing the nonlinear frequency generation process are presented in the time domain.   

We begin with decomposing the electric field into plane waves:  

  

 

0

( ) ( )

*

0

( )

*

(3.9) ( , ) ( , ) cos ( , )
2

1
( , ) ( , )

2 2

1
( , ) ( , )

2 2

n n
i t z i t z

c c

n
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c

d
E z t A z t z A z

d
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d
A z A z e

   
 

 



    




 




 





   
     

   

 
  
 



   

 
  

 
 

  







 

where ( , )A z   is the spectral density of the electric field amplitude, and 
 

( )
n

c

 
   is the 

frequency dependent electric field wavenumber.  

 

 

 

 

 

 

We assume, as presented above, that ( , )A z   is centered around some central frequency and exist 

only for positive values of  . 

Defining the following amplitudes: 

( )(3.10) ( , ) ( , ) ( , ) i zC z A z A z e  

           

where the subscript [ , , ]s p i   stands for the signal, pump and idler pulses respectively, and   is the 

corresponding pulse central frequency.  

 

Figure 15. Frequency domain field presentation 
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The pulses electric field can be easily represented in terms of C : 

 

 

*

0

0

1
(3.11) ( , ) ( , ) ( , )

2 2

1 1
( , ) c.c ( , ) .

2 2 2
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where ( , )C z t defined above is the Fourier transform of the electric field spectral density envelope 

centered at  : 

   
0

(3.12) ( , ) ( , ) ( , )
2

i td
C z t e C z C z 

    


   






      

Detailed derivation of the equations dictating the frequency conversion process is presented in appendix 

B. To summarize, the equations obtained are the following: 

 The TWM equations in the frequency domain: 
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 The TWM equations in the time domain: 
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If ( , ), ( , ), ( , )s p iC z t C z t C z t  have bandwidth much smaller than their central frequency, it can be  

assumed that      , hence:  

    

 

1 * 1 *
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yielding the above set of equations:  
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used in Ref. [27].  
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3.2.2 Simulation procedure in the time domain  

 

I. Pulses definition 

 

The pulses are defined in the same manner described in section (3.1.3), except that now the pulses 

contain the same number of discrete points and are defined on the same grid (In contrary to Ni,Ns and 

Np spectral points defined in section (10.1.2): 

 All pulses share the same time grid max max, .
2 2

t t
t

 
  
 

 

 The time grid defines the frequencies vector of the pulse time envelope: 

max

1
: :1: 1

2 2

t tN N
f f

t

  
    

  
, where max

t

t
dt

N
  is the pulses resolution in the time 

domain. 

 

II. Numerical integration 

 

The numerical integration is done using the split-step Fourier method. We divide the equation into two 

parts. The linear part accounts for dispersion, and the nonlinear part is responsible to the second order 

nonlinear optical generation through ( )z . 
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The linear part of the equations is first calculated in the frequency domain: 

( )
(3.18) ( , ) ( , )aiL hDisperesedC z e C z



  
  

where [ , , ]s p i  , ( )L   is given by (3.19) ( ) ( )L       and h  is the spatial resolution on 

the optical axis. If we wish to work in a time reference that moves together with the pump pulse, all 
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amplitudes must be translated: (3.20) ( , ) ( , ) ( , )
( )

p

g p

h
C z t C z t t C z t

v
  


    , where ( )g pv   is 

the pump pulse group velocity and pt is the time it takes the pump pulse to propagate distance .h In the 

frequency domain Eq. (3.20) takes the form 

( )

( , ) ( , ),g

h
i

v
C z e C z

 

      




    generalizing the 

linear operator ( )L   defined above:
 

(3.21) ( ) ( )
( )g p

L
v



 

 
   




   . 

The nonlinear part of Eq. set (3.17) is then numerically integrated using 4’th order Runge-Kutta, where 

the fields amplitudes are taken to be the dispersed ones defined in Eq. (3.18). 
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3.3 Simulation Examples 
 

We display some simulation results for general impression. We present the simulation outputs for DFG 

process between 1um Gaussian pump pulse to 0.75um Gaussian signal pulse. The simulated grating is 

periodically poled Lithium Niobade crystal with periodicity of 20um.  The simulated susceptibility is 

therefore   ( ) cos gz sign K z  , where the grating momenta gK  is given by 
 20

gK
m



 





. 

All simulation parameters are summarized below: 

Simulation parameter Value 

Pump Spectrum Gaussian pulse 

Pump wavelength [um] 1 

Pump energy [mJ] 1 

Pump temporal width (Transform limit) [ps] 100 

Pump Mode Field Diameter (MFD) [um] 

(Mode Field Diameter - 4  of the intensity profile) 

0.5

0.5

x

y

MFD mm

MFD mm




  

Pump Average Area 2[ ]
4

x ymm MFD MFD


  
0.196 

Signal Spectrum Gaussian pulse 

Signal wavelength [um] 0.75 

Signal temporal width (Transform limit) [ps] 50 

Signal Energy [uJ] 14 

Signal Mode Field Diameter (MFD) [um] 

(Mode Field Diameter - 4  of the intensity profile) 

0.5

0.5

x

y

MFD mm

MFD mm




 

Signal Average Area 2[ ]
4

x ymm MFD MFD


 
0.196 

 

The fields amplitudes demonstrated below are computed in the lab frame. The linear operator defined 

by Eq. (3.18) merely accounts to dispersion as defined in Eq. (3.19). 
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The time dynamics of the frequency conversion process is exhibited. The known behavior of periodic 

frequency conversion and back-conversion is typical to periodically poled crystals and was already 

addressed for the CW case in section (2.2). 

The pulse temporal characteristics effect on the frequency conversion process can be further examined. 

For demonstration we present the time dependent conversion process when the pump pulse is 1ps 

delayed from the signal pulse: 
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3.4 Time domain simulation vs frequency domain simulation – performance 

comparison  
 

We compare the time domain simulation and the frequency domain simulation in terms of calculation 

time and absolute errors, defined as follows: 

( ) ( )
[%] 100

( )

Total out Total in

Total in

E z E z
Absolute Error

E z


   

where TotalE is the total energy of the system defined in section (3.5) and ,in outz z are the crystal input 

and output facets respectively. We compared the simulation results for a DFG process between 1030nm 

pump pulse and a stretched Ti-Sappire oscillator pulse. Simulation parameters are provided below: 

Simulation parameter Value 

Pump Spectrum Gaussian pulse 

Pump wavelength [nm] 1030 

Pump energy [uJ] 20 

Pump FWHM  [nm] 2 

Pump chirp 27 2Chirp [10 ]Pump s   50 

Pump Mode Field Diameter (MFD) [um] 

 (Mode Field Diameter - 4  of the intensity profile) 

0.5x yMFD MFD mm    

Pump Average Area 2[ ]
4

x ymm MFD MFD


  
0.196 

Signal Spectrum Ti-Sappire oscillator measured spectral shape 

Signal Energy [uJ] 1 

Signal chirp 27 2Chirp [10 ]Signal s  0.5 

Signal Mode Field Diameter (MFD) [um] 

(Mode Field Diameter - 4  of the intensity profile) 

0.5

0.5

x

y

MFD mm

MFD mm




 

Signal Average Area 2[ ]
4

x ymm MFD MFD


 
0.196 
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Although not presented herein, we calculated the Mean Square Error (MSE) of the difference between 

the output pulses spectral shape for various values of optical axis discretization, and deduced that 

steady simulation results, where the obtained MSE is smaller than 1%, are achieved for optical axis 

discretization smaller that 0.5 m (more than 2000 calculations per mm). It is displayed, that the time 

domain simulation is both significantly faster (~X 10) and accurate (~X 3) than the frequency domain 

one.   

  

Figure 16.  Performance comparison between the time domain simulation and the 
frequency domain simulation. (a) Running time  comparison. (b) Absolute error comparison. 
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3.5 Energy considerations in the presence of nonlinear polarization 

In the following section, we present the energy flux equation in the presence on nonlinear polarization, 

and demonstrate its validity for the pulsed TWM Eq. set (3.13) obtained above.  

It is derived in appendix C section (10.3.1), that the following energy flux equation holds:  

 

2

0

1
(3.22)

2

eu S E
E

t z t
 

  
 

  
 

with the following notations: 

 The electromagnetic field energy density  
1

2
e NLu E E H H P E       . 

 The pointing vector ,S E H   calculated using the electromagnetic fields without taking into 

account their nonlinear polarization contribution.  

Integrating the above Eq. (3.22) over both the spatial domain and the time domain dxdydt  results in 

the following: 

2

0

2

0

3

0

1
( )

2

1
( )

2

( ) 1
(3.23) ( )

2 3

e

e

t
t

e
t

t

u S E
z E

t z t

Sdxdydtu E
dxdy dt z dxdyE dt

t z t

S z E
dxdyu z dxdy

z

 

 

 







  
  

  

 
 

  


 




 

 

 

As all pulses diminishes at t   , both 
eu and E diminishes at t   , which leads: 

( )
(3.24) 0

S z

z





 

where ( )S z is the total energy passing through plane perpendicular to the optical axis at place z   

2

2

sec

sec

( )
Energy

m
m

S z S dxdy dt   

and the pointing vector S E H   is calculated using the fields separated from their nonlinear 

polarization contribution.  
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To validate that the obtained pulsed TWM Eq. set (3.13) is correct, we verified that it obeys the energy 

conservation indicated in Eq. (3.23). Detailed derivation of the energy conservation rule is presented in 

appendix C section (10.3.2) and summarized herein: 

 The energy density 
dE   

2

J

m

 
 
 

 of pulse [ , , ]S P I  , where  stands for the signal, pump and 

idler pulses respectively is given by: 
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The pulse spectral density is therefore defined as  
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 The total energy of all three pulses is conserved: 
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3.7 Sum frequency simulation   
 

The equations describing the generation of an idler pulse centered around ,i  as the result of a DFG 

process between the signal and pump pulses centered around s and p respectively, were presented 

in the previous sections, where the idler central frequency was defined such that .i s p     The 

equations describing the generation of a SFG process between the signal and pump pulses can be easily 

deduced by observing the DFG process as an SFG process between the idler and the pump pulses:  

i p s     

The equations describing SFG are therefore the same as those for the DFG process with the following 

subscript exchange: 

i s

s i




 

The equations describing SFG are easily obtained: 

*

*
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4. Phase matching technique – design procedure  
 

In section (2.3) we briefly presented the QPM technique used to compensate the inherent phase 

mismatch between the interacting waves. While the method displayed accounts to periodic poling 

where the grating momenta is constant, i.e ( ) ,gK z k   in the following we present our 

phenomenological method for obtaining  adiabatically varying phase mismatch designs. First, we 

present our method used to obtain first order QPM designs. later on, the developed method is used to 

account to higher order QPM crystals. 

4.1 First order QPM design procedure 
 

In order to obtain adiabatic evolution from one frequency to another, the phase mismatch of the 

interaction shall be swept from a large negative (positive) value to a large positive (negative) one. If the 

phase mismatch is swept adiabatically compared to the interaction strength , dictated by the adiabatic 

criteria (Eq. (2.22)), efficient conversion occurs. As presented in section (2.4), the adiabatic sweep allows 

efficient conversion for a range of frequencies, because diverse wavelengths can be generated in 

different locations along the optical axis, where the phase mismatch of the interaction is approximately 

zero / 1k  . It is therefore clear that in order to convert a broadband source, the grating momenta 

shall range between all values of phase-mismatch parameter ( )k  within the desired range of 

converted frequencies.  The adiabatic design procedure of the grating function starts with a crude 

approximation, where the grating period 
2

( )
( )g

z
K z


    is increased linearly with the optical axis: 

min max

2 2
(4.1). min , max

( ) ( )k k

 

 

   
      

    
 

 
 

 max min

min(4.2). in

c

z z z
L

 
      

where cL   is the crystal length and inz  is the crystal input facet. 

The obtained grating function ( ) 2 / ( )gK z z   is than expanded in polynomial manner in terms of 

normalized optical coordinates   /norm in cz z z L  : 

0 0

(4.3). ( )

k
n n

initial k in
g k norm k

k k c

z z
K z a z a

L 

 
   

 
   

 

where n is the expansion order, and  ka  are the expansion coefficients.  The obtained performance of 

the achieved design is than examined using the numerical simulation, and the conversion efficiency of 

the adiabatic process is calculated all over the desired range of generated frequencies. The initial grating 
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Figure 17. Design Method Scheme. 

function design is then improved in an iterative manner using three parameters ,  and , that enable 

us to modify the simulated wavelength dependent conversion efficiency: 

0

(4.4). ( )

k
n

iterative in
g k

k c

z z
K z a
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A scheme of the design process is presented: 
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As described, optimizing over ,  and  results in an optimal design for specific crystal length and 

pulses spectra. Each of the parameters has a different effect on the conversion efficiency curve:  

 The parameter  determines the bandwidth of the conversion efficiency curve. Typical   

values are in the range [0.5,1]  . 

 The parameter  determines the slope of the conversion efficiency curve. Typical  values are 

in the range [0.5,1.5]  . 

 The parameter  is used to apply fine tuning on the obtained design.  deflects the entire 

conversion efficiency curve. Typical  values are  4 110O cm .  

 

 

 

 

 

 

We continue with providing illustrative explanation to the conversion efficiency dependence with each 

of the parameters defined above. For clarity, the influence of each parameter on the grating momenta 

function ( )gK z  will be examined when all other parameters effects are diminished, i.e 1, 1    and 

0.   

a) 𝜶 parameter effect:  

 

The functional dependence between ( )gK z and   is given by ( 1, 0   ):  

 

( , ) in
g g

c

z z
K z K

L




 
  

 
 

 

The modification to ( )gK z can be stated as ( , ) ( ).g gK z K z   The stretching imposed by   

therefore modifies the possible momenta provided by the grating, hence altering the bandwidth 

of the conversion efficiency curve. The dependency of the rapid adiabatic passage (RAP) curve 

with the optical axis is therefore strongly affected by the parameter , and the RAP curve slope 

variability is displayed in the following graphs for both 0.5  and 1  .  

 

 

Figure 18. Conversion efficiency dependence with the grating parameters 𝛂, 𝛃 and 𝛄. 
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b) 𝜷 parameter effect: 

The functional dependence between ( )gK z and   is given by ( 1, 0   ):  

 ( )g g normK z K z  

To understand why   modifies the conversion efficiency slope, the grating momenta is 

depicted for various values of  . We recall the first crude approximation to ( ) :gK z  

   
 

minmin max min max min

max min

2 2 1
( )g

norm
norm

K z
z

z

 

 
 
  

       
   

 

which up to a constant can be described as: 

 

 
min

max min

1
( )g

norm

K z

z





 

 

 

 

For a DFG process between Ti-Sappire oscillator signal pulse and 1030nm pump pulse in a 

Mgcln, the crystal grating periods min and max are given by 14um and 20um respectively. For 

the corresponding SFG process min and max are given by 2.7um and 4.5um respectively. 

 min max min/   is therefore quite close to 1, and the dependency between  g normK z  

and   can be exhibited using 
1

( , )
1

g

norm

K z
z 

 


. 

 

 

Figure 19. The parameter 𝜶 changes the bandwidth of the conversion efficiency curve as it modifies 
the RAP position slope curve. The added possible momenta provided with enlarging 𝜶 is manifested 
through the conversion efficiency curve.  
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It can be seen that by changing , one alters the slope of the grating momenta 
( , )gdK z

dz


in two 

opposite directions compared to the case with 1:   close to the crystal input facet, where the short 

wavelengths are generated, the slope absolute value 
( , )gdK z

dz


increases with 1   and decreases 

with 1,  while near the crystal output facet, where the long wavelengths are generated, the opposite 

dependecny with   is observed: the slope absolute value 
( , )gdK z

dz


decreases with 1   and 

increases with 1.   Because the adiabatic criteia in Eq. (2.22) strongly depends on the grating 

momenta slope, one can use   in order to alter the conversion efficieny of frequecies generated near 

the crystal input and output facets in opposite manner.   

Figure 21. Enlarging 𝜷 increases the conversion efficiencies of the wavelengths generated near the crystal 
input facet, while decreases the conversion efficiencies of wavelengths generated near the crystal output 
facet. Flat conversion efficiency curve is obtained. 

Figure 20. The parameter 𝜷 effect on the grating momenta   
1

( , ) 1 .g normK z z 
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c) 𝜸 parameter effect:  

 

The functional dependence between ( )gK z and   is given by ( 1, 1   ):  

 

 ( , )g gK z K z    

 

The parameter  is used to deflect the entire conversion efficiency curve, thus enabling us to 

carefully tune the maximal and minimal generated frequencies.  

  

 

 

 

 

 

 

 

 

 

Shifting the entire grating momenta changes the maximal and minimal momenta provided by 

the fluctuating second order nonlinear susceptibility, hence deflecting the entire conversion 

efficiency conversion curve.   

 

    

  Figure 22. The parameter 𝜸 effect on the grating momenta. 

𝛾 = 0 𝛾 = −2.5 ∙ 104𝑚−1 

−1 

Figure 23. Conversion efficiency dependence with 𝜸. The shifting of the entire conversion spectrum is observed. 
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4.2 High order QPM design procedure 
 

As stated before, the second order nonlinear susceptibility ( )z  fluctuates between   to   

according to the grating momenta ( ) :gK z   ( ) sign ( ) .gz K z z   When the batches in which the 

second order susceptibility is constant are too small, manufacturing limitations arise. In that case, high 

order QPM shall be taken into account. Applying high order QPM of order QPMN   in small intervals 

around specific location ,z  is achieved merely by multiplying the grating period 
2

( )
( )g

z
K z


  at the 

same location with the factor ,QPMN  hence duplicating every batch in which ( )z is constant with 

:QPMN  
2 2

( ) .
( ) ( )

QPM

g g

z N
K z K z

 
   In other words: 

(z)
(4.5) ( )

g

g

QPM

K
K z

N
  

We present simulation results for the conversion efficiency of SFG process between 20nm bandwidth 

pump pulse centered around 1030nm and its second harmonic for various QPM orders:  

 

 

 

 

 

 

 

 

 

 

 

It is exhibited that in contrary to the periodically poled case, where the conversion efficiency 

dependence with the QPM order is given by 2

QPMN   [28], the dependence in the case of 

adiabatically varying designs is much weaker. The supremacy of adiabatic designs over periodically poled 

crystals is presented in terms of sensitivity to the QPM order.    

Figure 24. Conversion efficiency dependence with QPM order for a SFG process between 
undepleted signal and its second harmonic. 
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5. Article - Ultrafast adiabatic second harmonic generation  
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6. Article - Pulse shaping of broadband adiabatic SHG 
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7. Difference frequency generation mid-IR pulse compression 
 

The mid – IR regime is of great importance in many scientific areas as chemistry, materials science 

biology and condensed matter physics, as it covers many of the vibrational absorption bands of 

molecules. The spectroscopic optical methods in the MIR enable us to capture the material 

“fingerprints” through its absorption, transmission spectra and phase distortions, thus providing us with 

an effective mechanism to determine the local structure and dynamics of individual molecule. By 

providing a broadband- ultrafast source, one can also account to the femtosecond time dynamics of 

molecules conformational changes, necessary for femto-chemistry experiments. Broadband ultrashort 

MIR source is also desired for attosecond pulse generation, as the number of harmonics generated in 

the strong field regime scales with .  

 As broadband sources in the MIR are lacking, frequency conversions are used in order to create 

such sources. In the following, we examine the generation of a MIR pulse through conversion between a 

broadband Ti-Sappire oscillator pulse and a strong pump. Using the simulation developed in the 

previous sections, a robust optical scheme for the generation of an ultrashort MIR pulse is presented. 

The compression scheme contains Spatial Light Modulator (SLM), diffractive element and an 

adiabatic crystal, and the conversion is between the output of a Ti-Sappire oscillator, spanning between 

600nm to 1000nm and a narrowband pump pulse around 1032nm.  

The problem was to find the optimal parameters for the compression scheme, which includes 

the pulses time durations, the pump pulse bandwidth, the SLM phase, the distances the pulses goes 

through the air before the nonlinear crystal, and the dispersive element length and material, to obtain 

both efficient conversion all along the signal spectra as well as SLM phase requirements well within its 

operational limitations. The optical scheme is plotted herein: 

 

 

 

 

 

 

 

 

The compression scheme is based on the fact that when the pump spectral bandwidth is much 

smaller than the signal pump spectra, the generated DFG pulse phase is linear with the signal pulse 

phase. By assigning  ( , ) ( )p p pA z A z      to Eq. set (3.13) one obtains: 

DFG  
  

Pump 
  

1032nm,1nm-10nm 
bandwidth.  Picosecond pulse  

             

SLM 
   

AIR   
 3-5m   

Signal 
   

600nm-1000nm.    
Picosecond pulse 

Dispersive 
element    

Idler 
   

1.5nm-5nm                   
Picosecond pulse                

Femtosecond  
MIR pulse    

Delay   

Figure 25. MIR pulse generation and compression scheme. 

AIR   
 6-10m 
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*

*

( )
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It is therefore clear that by adding the incoming signal pulse phase the opposite of the generated idler 

phase, using the SLM, one can obtain a MIR pulse with no phase difference between its spectral 

components, that is to say transform limited pulse. Due to damage threshold limitations, we wish the 

MIR pulse to be compressed not inside the adiabatic crystal but rather inside some simple diffractive 

element (silicone in our case). The MIR pulse phase added to the signal pulse was therefore calculated 

after the propagation inside the silicone.  

The simulation parameters are the following: 

 

Simulation Parameters Simulation Value 
Pump Pulse Central Wavelength [ ]p nm  

(Gaussian Pulse) 

1032 

Pump Pulse Time Domain FWHM  p

FWHM ps   Positively chirped – Detailed value will be 
determined in the following 

Pump pulse FWHM [ ]FWHM nm   1-8 

Pump Pulse Energy [ ]pE uJ  20 

Signal Pulse Spectra Spectral measurements, plotted below 

Signal Pulse Time Domain FWHM  s

FWHM ps  Detailed value will be determined in the following 

Signal Pulse Energy [ ]sE uJ  1 

Effective Diameter  um  150 

Nonlinear Susceptibility ( )z  
pm

V

 
 
 

 
27 

Crystal Length[ ]mm  20 

Crystal Material  Mgcln5 

Crystal Grating Function 
1

cm

 
 
 

  2( ) 3569 714 156g cm cm cmK z z z     

Dispersive element Silicone. The length will be determined in the 
following 

 

The input simulated Ti-Sappire oscillator spectra is the 

experimentally measured venteon laser spectra: 
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7.1 Conversion efficiency dependence with pulses durations  
 
Before Examining the compression scheme we wish to find what is the best combination of signal and 
pump pulses durations such that efficient frequency conversion is achieved all over the signal spectra.  

We define
( , )

(7.2) ( ) 1 ,
( , )

s f

s i

P z

P z


 


   where ( , )sP z  is the signal spectra as function of the crystal 

optical axis. The next quantities are defined: (7.3) ( ( )),Mean mean   and (7.4) ( ( )).std  

Mean  is a measure for the conversion efficiency, while   is a measure of the effectiveness of the 

conversion efficiency all along the signal wavelengths.  

For a pump pulse bandwidth of 1nm, the following graphs are obtained: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For a pump pulse bandwidth of 8nm, the following graphs are obtained: 

 

 

 

 

 

 

 

 

Figure 26.The DFG average conversion efficiency  Mean and conversion efficiency  variance  as function of the pulses time 

durations, for  a pump pulse bandwidth of 1nm. 

Figure 27. The DFG average conversion efficiency  Mean and conversion efficiency variance  as function of the pulses 

time durations, for  a pump pulse bandwidth of 8nm. 
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One can conclude from the previous graphs, that both conversion efficiency as well as its robustness all 

along the signal spectra is dictated by the pump and signal pulse durations and is insensitive to the 

pump spectral bandwidth. The pulses time durations for optimal conversion are obtained: 

 Pump pulse duration shall be between 6ps-8ps. 

 Signal pulse duration shall be smaller than 2ps.  

All pump pulse durations are defined using (10%-90%) knife edge method, namely the pulse duration 
between 10% to 90% of the pulse cumulative energy distribution function: 
 

2 2
( ) ( ) / ( )

t

f t A d A d   


 

   
    
   
   

 

which for a Gaussian pulse results in 
 10% 90%

1.0871 FWHM 


 .                     

As displayed, conversion efficiency is maximal when the pump pulse duration is between 6ps-8ps. Hence 

in following simulations, the simulated (10%-90%) pump pulse duration was taken to be 7ps.  

7.2. Compression feasibility dependence with signal chirp 
 

While efficient conversion demands very short signal pulses (<2ps), it was not a priori clear that 

compression is feasible with such pulses. In the following we examined the compression feasibility for 

different signal chirps, spanning between 27 25 10 [ ]sC s   to 27 25 10 [ ]sC s   , where  

 

 
2

( ) ,signal

s s pC      and 763[nm].signal

p   

 

For every given signal chirp, air propagation length before the nonlinear crystal and air propagation 

length after the nonlinear crystal, we calculated the total phase that needed to be compensated by the 

SLM for various lengths of the silicone element. A measure for the total phase needed to be 

compensated by the SLM is the following:  

 

   
1.8 5.5 1.8 5.5

(7.5) max min
i i

compensation m m m m
SLM Idler Phase Idler Phase

        
   

 

We observed that the total phase defined above is minimal for specific silicone lengths, which enabled 

us to examine the compression scheme only for a discrete set of lengths, which we denoted as  optL . 

The compensationSLM at the specific set of silicone lengths optL  is denoted as 

 (7.6) opt compensation optSLM L   
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Numerical trial and error examinations show that good SLM compensation can be done whenever   

350[Rad]opt   

 

 

 

 

 

 

 

 

For every signal chirp and calculated silicone length, the SLM phase was calculated, interpolated to 640 

values, and inserted again into the simulation, yielding a compressed pulse with phase we seek to be 

flat. We measured the phase difference by Delta SLM: 

(7.7) max( idler ) min( idler )SLM Compressed CompressedDelta    

 
 

In appendix D section (10.4.1), we present the simulated opt defined in Eq. (7.6) for various values of  

signal chirp, and for a span of air lengths before and after the nonlinear crystal. Observing the tables  
in the appendix, several conclusions are deduced: 

 

 It is easier to compress the MIR pulse in the regime 27 27 2[ 4 10 1 10 ][ ]sC s     . 

 For a given air propagation lengths, the shorter the crystal the compensation is better (less 

phase to compensate). 

 The transform limit case is not inferior in terms of compensation vs. other signal chirps. 
 

 

  

Figure 28. SLM compensation phase as function of the silicone length. 
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7.3. Signal conversion efficiency dependence with signal chirp, after SLM 

compensation 
 
We would like to understand what the desired signal chirp in terms of efficiency is, after being 
compensated by the SLM.  

The quantities 
( )

(7.8) ,
( )

Idler f

E

Signal i

E z

E z
  and (7.9) ( ( ))std    are presented for the different 

scenarios.
E measures the frequency conversion efficiency, and  is a measure to the conversion 

efficiency wavelength dependence.  

In appendix D section (10.4.2), we present the simulated efficiencies 
E and   for various values of 

signal chirp, and for a span of air lengths before and after the nonlinear crystal. Observing the tables in 
the appendix, several conclusions are deduced: 
 

7.4. Transform limited examination 
 

After being convinced that the transform limited case is not inferior to the chirped case, we examined 

the transform limited case thoroughly. The examination is detailed in appendix D section (10.4.3).  

Several conclusions can be deduced from the examination: 

 In terms of both conversion efficiency and compensation quality we wish the crystal 

length to  be ~ 10mm 

 The longer the signal goes through the air, conversion efficiency fluctuation is smaller 

( ( ))std   . 

 The following useful formula is deduced: 

     ,(7.9) 7.76  4.31 n +5.68 L [ ] 3 0.795 [ ] 6n m before after

crystal air airL m m L m mm     

where n,m are discrete numbers. 

 Buying 16mm of silicone allows a robust compression scheme for every propagation 

distance before the nonlinear crystal in the range of 3-4m, and with propagation 

distance after the nonlinear crystal in the range 6-10m 
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7.5 Efficient MIR pulse compression – conclusions 
 

In the previous sections we investigate the optimal scheme for both efficient and robust generation of 

transform limited pulse. We arrive at the following conclusions: 

 Pump temporal width (FWHM) shall be around 7ps. 

 The signal transform limited case is not inferior to other chirped signal pulses, in terms of both 

compression feasibility and conversion efficiency. 

 While many solutions exist, all obeying Eq. (7.9), not all solutions exhibit good conversion 

efficiency curve. If we buy 16mm of silicone, for every propagation distance before the 

nonlinear crystal, fine solution for the compression scheme exist with propagation distance after 

the nonlinear crystal in the range 6-10m.  The expected energy conversion efficiency is between 

25% to 15%. 

 

The simulated generated compressed transform limited MIR pulse is presented: 

 

  

Figure 29. Compressed  generated MIR pulse. 
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8. Adiabatic four-wave mixing frequency conversions  
 

In recent years, much effort has been invested in developing schemes to efficiently convert broader and 

broader optical spectra. Yet the common paradigm of nonlinear frequency conversion with constant 

phase-matching includes a restrictive tradeoff between the conversion efficiency and its bandwidth.  

The adiabatic frequency conversion concept, exhibited in the previous chapters, offered the 

ability to sidestep efficiency-bandwidth trade-offs in nonlinear frequency conversion. The adiabatic 

character of the conversion both dramatically increases the available bandwidth in these applications 

while also ensuring high conversion efficiency. Application of this concept to three-wave mixing in 

aperiodically poled quasi-phase-matched media, allowed the generation of phase and amplitude-

controlled, octave-spanning, coherent mid-IR light sources by means of adiabatic TWM processes. 

Moreover, as presented in section (6), the amplitude and phase transferring qualities of adiabatic 

frequency conversion allowed amplitude and phase tunability by pulse shaping prior to conversion, 

allowing great flexibility for spectroscopic applications.  

Though very promising, the traditional platforms for frequency conversion using TWM, such as 

SFG, DFG, optical parametric amplification (OPA), and optical parametric oscillation (OPO), are limited to 

devices based on specialized materials engineered and grown specifically for the application, whether 

for ultrashort pulses or for single-frequency sources. In contrast, the ubiquitous presence of cubic 

optical nonlinearities means that all devices employing light propagation have the capacity for frequency 

conversion. Examples include optical amplifiers used for telecommunications, silicon and other 

semiconductor waveguides used for photonics applications, and gas filled capillaries used for spectral 

broadening of ultrashort pulses. In each of these technologies, four-wave mixing frequency conversion 

(FWMFC) has been employed [31] [32] [33] [34], and four-wave mixing frequency converters have 

appeared in other settings, such as highly nonlinear and photonic crystal fibers [35] [36]. Like all 

nonlinear frequency conversion, application of four-wave mixing to the generation of broadband light 

sources are limited in bandwidth, and are further limited by a trade-off between efficiency and 

bandwidth.  

                In the following, we introduce the concept of adiabatic frequency conversion for four-wave 

mixing, which we find broadly applicable to numerous 3  nonlinear platforms. First, we present a 

general propagation equation for four-wave mixing derived from Maxwell’s equations, capturing the full 

frequency and time domain nonlinear pulse propagation effects for wave-guided interactions. Later on, 

we present that the obtained equations can be simplified in several conditions to reveal the SU(2) 

symmetry in FWM, which leads to an analogy with rapid adiabatic passage in two-level atomic systems.  
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8.1 Pulsed four wave mixing wave- guided interactions 
 

We describe the time dependent evolution of Four Wave Mixing in dielectrical waveguides via third 

order susceptibility. We assume that only one waveguide mode is excited.   

 * ( , )

( , )

1
(8.1) ( , ) ( , ) ( , , )

2 2

i z z i t

t t

E z

d
E A z A z E x y e e  




  









    

where ( , )A z   is the spectral density of the electric field amplitude, 
 

( )
n

c

 
   is the frequency 

dependent electric field wavenumber, and ( , , )tE x y  obeys Helmholtz Eq. (3.2). The subscript t in the 

electric field written above denotes the electric field transverse dimension, perpendicular to the optical 

axis.  

Detailed derivation of the equations dictating the FWM frequency conversion process is presented in 

appendix E. We summarize the derivation herein: 

 ( , )A z   is the spectral density of a pulse centered around , where [1, 2,3, 4]   and the 

pulses central frequencies obey 1 2 3 4.        

 We assume that the electric field profile merely changes within the spectral envelope of the 

pulses. In order words:  

 

   ( , ) * ( , ) *( , ) ( , ) ( , ) ( , ) ( , ) ( , )i z z i z zE r e A z A z E r e A z A z   

                

 

  We define the amplitudes C and B  

( , )(8.2) ( , ) ( , ) ( , ) i zC z B z A z e  

           

where [1, 2,3,4]  . 

 ( , )C z t  is the Fourier transform of the electric field spectral density envelope centered at  : 

   
0

(8.3) ( , ) ( , ) ( , )
2

i td
C z t e C z C z 

    


   






      

 We define the following overlap integrals: 

 

 

3 4 2 1 3 2 4 1 4 2 3 1

2 2 2
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1
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1
(8.5) 2
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i j j i i j i j
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dxdy E E E E



 

        

   




 

where we denote ( , )tE E r  . 
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 The FWM equations in the frequency domain reads: 
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3 4 2
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0 3 1,2 2 2 1
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)
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) ( , ) * ( , )

4 1

2,2 ( , ) * ( , ) ( , )
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2,3 3 3
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2
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3

( , )3
0 3
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3 3
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( , ) * ( , ) ( , )

1,3 1 1 3

( , ) *

2,3 2 2
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where the symbol '* '  stands for convolution: ( )*g( ) ( ') ( ') 'f f g d     
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 The FWM equations in the time domain reads: 

   

 

11
1 1 1 1 1 1

*

3 4 2

1

2 2 2 20 3 1 1,1

1,2 2 1,3 3 1,4 4 1 1

12

(8.7)

( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )
2

( , )

z in

Int

dC z t
i z C z i z z z C z

dz

C z t C z t C z t

i
C z t C z t C z t C z t C z t

dC z t
i

dz
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3 4 1

1
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3 3 3
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( , ) ( , ) ( , )
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8.2. SU(2) symmetry in four wave mixing  
 

It is presented in this section, that the adiabatic evolution frequency conversion characteristics exhibited 

in the previous chapters for TWM interactions, can be also adopted for the case of FWM. 

 

The equations dictating the interaction between four waves were displayed in the previous  section, 

Such  that 
1 2 3 4      , where 

[1,2,3,4] 
 are  the  pulses  central  frequencies. Ignoring the 

frequency dependence of the electric field transverse profile ( , ),jE r   all mode overlaps degenerates 

to the same value, denoted :  

4

,

3

2
i j Int E dxdy     . 

Assuming that the pulses are continuous waves  ( , )A z A       where [1, 2,3, 4]  yields: 

   

   

   

2 1 3 4

2 1 3 4

2 1 3 4

2 2 2 2*1
1 0 3 3 4 2 1 1 2 3 4 1

2 2 2 2*2
2 0 3 3 4 1 2 2 1 3 4 2

2 2 2 2*3
0 3 1 2 4 3 3 1 2 4 3

4

(8.8)

1

2

1

2

1

2

i z

i z

i z

dA
i e A A A A A A A A A

dz

dA
i e A A A A A A A A A

dz

dA
i e A A A A A A A A A

dz

dA

   

   

   

   

   

  

  

  

   

 
      

 

 
      

 

 
      

 

   2 1 3 4
2 2 2 2*

0 3 1 2 3 4 4 1 2 3 4

1

2

i z
i e A A A A A A A A A

dz

   
  

    
      

 

 

We redefine the pulses notations according to the following scheme (1,2,3,4) → (Pump A,Signal, Idler, 

Pump B).  

 

  

 

 

 

 

 

 

Idler 

Pump B 

Signal 

Pump A 

Figure 30. Four wave mixing scheme. Signal pulse is being depleted as the idler pulse is being generated via the pump pulses.  
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Applying the modified pulses notations to Eq. set (8.8), and assuming that the pump waves (both A and 

B) are much stronger than the signal and idler waves    2 2 2 2 2 2
, , ,B S I B S IA A A A A A

results in the following: 

    

    

2 2

2 2

2 2*

2 2*

1
(8.9) 2

2

1
2

2

2 exp

2 exp

A
A A B A

B
B B A B

I
I A S B A B I

S
S I B A A B S

dA
i A A A

dz

dA
i A A A

dz

dA
i i k z A A A A A A

dz

dA
i i k z A A A A A A

dz









 
   

 

 
   

 

      

      

 

Where  S A I Bk         is the phase mismatch parameter and 0 3

2

  
  . Under the 

assumption that the pump waves are much stronger than the signal and idler waves, one obtain that the 

effect of four wave mixing for the pump waves results merely in phase modification, hence not affecting 

to total power carried by the waves. In that case, the pump waves are therefore undepleted, and the 

effect of FWM is significant only for the idler and signal waves.   

 

The solution of Eq. set (8.9) for the pump waves can be easily deduced: 

    

    

2 2

,0 ,0

2 2

,0 ,0

(8.10) ( ) exp 2 exp

( ) exp 2 exp

A A A A B A A

B B B B A B B

A z A i A A z A i z

A z A i A A z A i z

 

 

    

    

 

where 
,0AA and 

,0BA are the pump waves amplitudes at 0z  . 

 

Substitute Eq. set (8.10) into Eq. set (8.9) for the idler and signal waves results in the following:  

 

     

     

2 2*

,0 ,0

2 2*

,0 ,0

(8.11) 2 exp

2 exp

I
I A B A B S A B I

S
S A B I B A A B S

dA
i i k z A A A A A A

dz

dA
i i k z A A A A A A

dz

  

  

        

        

 

 

We define the following normalized amplitudes:  

   exp exp
(8.12) ,

I I S S

I S

I A B S A B

A i z A i z
C C

A A A A
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We continue with the derivation of 
IC : 

   

 
     2 2*

,0 ,0

exp exp
(8.13)

exp
2 exp

I II I
I I

I A B I A B

I

I I I A B A B S A B I

I A B

i z i zdC dA
i A

dz dz A A A A

i z
i C i i k z A A A A A A

A A

 


 


   



 

        

 

      

     

*
2 2 ,0 ,0

2 2 *

,0 ,0

2 2 exp exp

2 2 exp

A B

I I I A B I I A B I S S A B S

I A B

I I I A B S I S A B A B I S

A A
i C i A A C i i k z C A A i z

A A

iC A A iC A A i k z

       


        

         

         

 

Define the coupling strength *

,0 ,04 I S A BA A    and arrive: 

     
2 2

(8.14) 2 exp
2

I
I I I A B S S I A B

dC
iC A A iC i k z

dz


                

In the same manner one can obtain the evolution of :SC  

     
*

2 2
(8.15) 2 exp

2

S
S S S A B I S I A B

dC
iC A A iC i k z

dz


               

we can define ,I S   to simplify the equations obtained in the following manner: 

    2 2 2 2

(8.16) 0

2 2

S I A B

S S A B I I A B

k

A A A A

   

    

     

       
 

The solution is obtained: 

   

   

2 2

2 2

(8.17) 2 2 2 2 2 2
2 2 2

2 2 2 2 2 2
2 2 2

S A B A I S B B A I S

I A B A I S B B A I S

k
A A

k
A A
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The parameter  is given by: 

  

   

2 2

2 2

2 2

(8.18) 2

2 2 2 2 2 2
2 2 2

2 2 2

S S A B

A B A I S B B A I S

A B
A B

A A

k
A A

k
A A

  

 
       

 

    


         


   

 

The coupled equations posses SU(2) symmetry, written in matrix form: 

*

2
(8.19)

22

I I

S S

C Cd i

C Cdz

 

 

    
     

    
 

Recall the evolution of TWM in the undepleted pump approximation: 

1 1

*

3 3

(8.20)
2

C Ckd i

C Ckdz





    
     

    
 

The effective phase mismatch parameter is therefore given by  

2 2
(8.21) 2 A A B Bk A A       

Which can also be denoted as 2effk   , where every wave vector is added the corresponding 

SPM/XPM term: 

 

 

 

2 2 2 2

2 2 2 2

(8.22)

1
2 2

2

1
2 2

2

S A I B

S S S A B B B B B A

A A A A B I I I A B

k

A A A A

A A A A

   

     

     

    

 
      

 

 
      

 

 

which indeed yields the effective phase mismatch 2 :  

   
2 2

2 2

2 2 2 2 2 2A S A I B B S A I B

eff

A A B B

k k A A

k k A A

         

 

           

    
 

To conclude, we obtained SU(2) symmetry 

(8.23)
2

effI I

effS S

kC Cd i

kC Cdz
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with the following definitions:  

2 2 *

,0 ,0, 4eff A A B B I S A Bk k A A A A            

   

   

2 2

2 2

exp 2 2 2 2 2 2
2 2 2

exp 2 2 2 2 2 2
2 2 2

I A B A I S B B A I S

I

I A B

S A B A I S B B A I S

S

S A B

k
A i z i A z i A z

C
A A

k
A i z i A z i A z

C
A A

 
       



 
       



 
           
 

 
         
 

 

with the Hamiltonian given in the form Eq. (8.23), the normal adiabatic criteria can be deduced. It is 

therefore presented that the adiabatic evolution frequency conversion characteristics exhibited in the 

previous chapters for TWM interactions, can be also adopted for the case of FWM.  
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9. Future research 
 

In the previous chapters, we presented several topics of research, encompassing areas yet to be fully 

researched:  

1. Theoretical Adiabatic Evolution criteria in the ultrashort regime 

While the condition for an adiabatic evolution exist for the case of nonlinear TWM interactions 

[25] in the CW regime, adiabatic criteria evolution for ultrashort pulses is still absent. The 

Hamiltonian presented in Ref. [25] shall be generalized to fit to wideband pulses, towards 

achieving a general adiabatic criteria. 

 

2. DFG pulse compression realization  

The DFG compression scheme presented in section (7) is to be experimentally validated for the 

Generation of MIR ultrashort pulse. 

 

3. Experimental validation of adiabatic FWM using silicon photonics  

In contrary to the case of TWM interactions where we facilitated the phase mismatch 

compensation by adiabatically changing the signs of the second order nonlinear susceptibility, 

we wish to experimentally exhibit the concept of adiabatic four wave mixing by introducing 

physical deformations to a silicone waveguide, thus providing the missing momenta by the 

spatial frequencies introduced by the electric field modal overlap :Int  (Eq. (8.4)) 

  0( ) 1 cos ( )Int Int gz K z z     

 

 

 

 

 

 

 

The design of an optical waveguide tailored to specific application, using the equations 

introduced in section (8), and the experimental validation of the obtained set of equations is  to 

done ahead.   

  

Figure 31. Adiabatic FWM in Silicon Photonics 
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10. Appendixes   

10.1 Appendix A – Spectral domain modeling: derivation and formulation 

10.1.1 Spectral modeling derivation  

 

We derive the equations of an input pulse being inserted into a media with chirped second order 

nonlinear susceptibility. Denoting the fields amplitudes with jA , where j denotes the frequency j  , the 

electric field can be written as:  

 
(A.1) ( ) e ( , )j ji t k z

jj
E A z F x y f

 
   

where jk  is the electric field wave number, given by ( )
j

j jk n
c


 , z is the optical axis of the crystal, 

f is the simulation resolution in the frequency domain, and ( , )F x y  is the electric field mode profile 

obeying Helmholtz equation: 
2

2 2(A.2) ( , ) ( , ) 0
j

t j

n
F x y k F x y

c

  
        

 . 

The total electric field in equation (A.1) also obeys Helmholtz equation with nonlinear polarization:  

22 2
2

02 2 2
(A.3) NLPn E

E
c t t




  
 

 

Continue with writing the nonlinear polarization term contributing to the SFG term:  

     
22 2

0 2 0 2

,

(A.4) 2 2 ( ) ( )e e ( , )j j k k
i t k z i t k z

NL j k

j k

P E A z A z F x y f
 

   
 

    

The left side of equation (A.3) is:  

 

 

 

 

 

 

        

    

2 2 2 2 2

2

2 2 2

Eq. (A.2)

( ) e ( , ) ( ) e ( , ) ( ) e ( , )

( ) e ( , ) ( ) e ( , )

j j j j j j

j j j j

i t k z i t k z i t k z

t z j j t z j

j j j

i t k z i t k zj

j j z j

j j

E A z F x y f A z F x y f A z F x y f

n
E A z k F x y f A z F x y f

c
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Applying the following slowly amplitude approximation: 

      2 2
( )

( ) e ( )e 2 ej j j j j ji t k z i t k z i t k zj

z j j j j

dA z
A z k A z ik

dz

    
     

yields: 

    

   

 

2
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2

2

2

( ) e ( , ) ( ) e ( , )
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2 e ( , ) ( ) e ( , )

( )
2 e ( , )

j j j j

j j j j

j j

i t k z i t k zj

j j j j

j j

i t k z i t k zj j

j j

j j
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j

j

n
E A z k F x y f k A z F x y f

c

dA z n
E ik F x y f A z F x y f

dz c

dA z
E ik F x y f
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2 2

2
( ) e ( , )j ji t k z

j

j

n
A z F x y f

c t

  
  

 


 

 
2 2

2

2

( )
(A.5) 2 e ( , )j ji t k zj

j

j

dA zn E
E ik F x y f

c t dz

   
      

   
  

Substitute Eq. (A.5) into the left side of Eq. (A.3), together with the insertion of Eq. (A.4) into the right 

side of Eq. (A.3) yields: 

 

     
22 2

,

0 2 0 2

( ) ( ) e e ( , )
( )

2 e ( , ) 2

j j k k

m m

i t k z i t k z

j k

j ki t k zm
m

m

A z A z F x y f
dA z

ik F x y f
dz t

 


  

 



 
  

   
   

 


  

Multiplying both sides of the above equation with *( , )F x y  and integrating over the cross section results 

in the following: 

       2

0 0 2

,

( )
2 e 2 ( ) ( ) e ej jm m k k

i t k zi t k z i t k zm
m j k j k

m j k

dA z
ik A z A z f

dz

 
    

  
      

 
   

where 

2

2

( , ) ( , )

( , )

F x y F x y dxdy

F x y dxdy
 




.  

Using the orthogonally of planar waves one can compare time domain spectral waves: 
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,
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2

2
,

2

2

2
,
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2 e 2 ( ) ( ) e e

( ) 2
2 ( ) ( ) e

( ) ( )
(A.6) ( ) ( ) e

j jm m k k

m j k

m j k

m j k

i t k zi t k z i t k zm
m j k j k j k m

j k

i k k k zm m
m j k j k m

j k

i k k k zm m
j k
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dA z
ik A z A z f

dz

dA z
ik A z A z f

dz c

dA z z
i A z A z
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  j k m f     

 

The equations describing the SFG contribution to the fields amplitude were derived. The 

electromagnetic field intensity [W] is given by:   

2 2 2 2 2

0 0 0

( , ) A(z) A(z) ( , ) A(z)
2 2 2

n n n
P dxdy F x y f f F x y dxdy f

  
        

We wish to normalize Eq. (A.6) such that 

2

0

( )

2

j jA n
f




   will be in 

2

W

m
units.  Define ( ) ( ) :B z A z   

2

2 2

2

2
0 01

( ) ( )
[ ]

2 2

m

W

B z A z W
f f

m

n n

 
     as we wish to obtain.  

Rewriting Eq. set (A.6) in terms of ( )B z results in the following: 

   

   

2

2

2
,

2

2

2
,

( )( ) ( ) ( )1
e

( ) ( )
(A.7) ( ) ( )e

m j k

m j k

i k k k zjm m k
j k m

j km

i k k k zm m
j k j k m

j km

B zdB z z B z
i f

dz k c

dB z z
i B z B z f

dz k c

 
   

 
   

 

 

    
  

   





 

The familiar equation for SFG is introduced. The equation for DFG can now be easily deduced: 

   
2

*2

2
j,

( ) ( )
(A.8) ( ) ( ) e j m ki k k k zm m

j k m k j

km

dB z z
i B z B z f

dz k c
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10.1.2 Efficient equations formulation for difference frequency generation   

 

We present efficient formulation of Eq. set (A.7) and (A.8) for the case of DFG. Assume we have two 

pulses, as presented below, denoted as “Signal” and “Pump”. The interaction between the two pulses 

generates a third pulse, denoted as “Idler”.  

 

 

  

 

We start with defining the amplitudes: 

  ( )S jB f  - Signal amplitudes defined in the range 
min max[ , ]s sf f  . The grid is equally spaced with   

spacing f . j  denotes ascending frequencies on the signal grid:  min( ) 1s sf j f j f    . 

 

 ( )P jB f - Pump amplitudes defined in some range: 
min max[ , ]p pf f  . The grid is equally spaced 

with the same spacing f mentioned above .  Subscript j  denotes descending frequencies on 

the pump grid  max( ) 1p pf j f j f    . 

 

 ( )I jB f  -  The idler frequencies will be defined using the pump and signal grids.  

   min min max max max min,i s p i s pf f f f f f     . The grid is equally spaced with the same 

spacing f mentioned above Pay attention that every DFG possible between the signal and the  

pump exists on the above grid. Subscript j  denotes ascending frequencies on the idler grid: 

   min max( ) 1I s pf j f f j f     . 

 

 

 

Signal Pump Idler 

f
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Given that the signal grid contains sN  points:   
max min

1s s
s

f f
N

f


 


,  and that the pump grid contains 

pN  points:   
max min

1
p p

p

f f
N

f


 


, The idler grid will contain: 

       

   

max min min max max min max minmax min

max min

1 1 1

(A.9) 1

s p s p s s p pi i

i i
s p i

i s p

f f f f f f f ff f

f f f

f f
N N N

f

N N N

     
 

  


      



  

 

Let’s examine the energy conservation condition Signal Idler Pumpf f f  :  

 

 

   

       

     

max

min

min max

min min max max

min min

( ) 1

( ) 1

( ) 1

1 1 1

1 1 1

1

p p

s s

I s p

Signal Idler Pump

s s p p

s s

f k f k f

f m f m f

f j f f j f

f f f

f m f f f j f f k f

f m f f j f k f

j m k

   

   

    

  

           

         

  

 

We observe, that by using the grids proposed,    1j k m

I P S m k j          , which 

dramatically simplifies the equations.  Continue with deriving the simplified equations by inserting the 

amplitudes defined above. We start with the equations defining the idler pulse, Eq. (A.8). 
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2
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kj g kf j k

dB z f z
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this sum is a convolution. The equations describing the pump are presented: 
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2
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Continue with defining the pump equations:  
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now we got correlation function instead of convolution  

For brevity we define ( , )e ,mik z

m S mS B z f


 ( , )e mik z

m I mI B z f


 .  For the calculation of the pump 

amplitudes it is therefore required to calculate  
*

1k m m k

m

C S I f   for 1: pk N , where mS contains 

sN  samples, and mI contains iN  samples. When Matlab R2013a calculates correlation using xcorr 

function, it zero-pad the shortest input (hence the signal):  

 

 1 2 3 1 2 3

1 2 3

* * * * *

1 2 3 1

* * * * *

1 2 3 1

( ) [ ],[ ] :

0 0 0 0

1

2

s i

s

p

i i

i i

N N

N

N zeros

N N

N N

f m xcorr S S S S I I I I

S S S S

m I I I I I

m I I I I I











 



 Efficient adiabatic frequency conversions for ultrashort pulses 

81 

* * * * * *

1 2 1 1

* * * * * *

1 2 1 1

* * * * *

1 2 1

1

p p p i

p p i i

s s i

s N N N N

s N N N N

i N N N

m N I I I I I I

m N I I I I I I

m N I I I I I

 

 





 



 

The rectangles highlights the elements that are being multiplied for each element of the correlation  

vector. For example, the first element in the correlation vector is *

1 ,
iNS I the second term is  

 * *

1 1 2i iN NS I S I   and so forth. Pay attention to :sm N  

  1
*

*

1 1( , )e ( , )em m k

p

p

ik z ik z

m m N S m I m k

m m k N

S I f B z f B z f f  

   



     

which is the term that contributes to pk N  in Eq. set (3.11). Pay attention to :im N  

  1
*

*

1

1

( , ) e ( , ) em m kik z ik z

m m S m I m k

m m k

S I f B z f B z f f  

 



     

which is the term that contributes to pk N  in Eq. set (3.11).  

In conclude ,the terms that contributes to  1: N pk   are the flipped xcorr elements between 

 :s iN N .  The equations describing the pump pulse were derived:  
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The equations describing the signal pulse can be deduced in the same manner:  
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The total set of formulated equations is presented: 
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10.2 Appendix B- Time domain modeling derivation 
 

Start with Maxwell equations in the presence of nonlinear polarization term:  
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Apply curl on Eq. (B.1):  
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We would like to make some of the calculations in the frequency domain: 
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Hence, the Fourier transform of the electromagnetic field ( , )A z t  is given by:  
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2

n
i z

cE z E z A z A z e
 

 

  


 

 
      

 
 

 

 

 

 

From now on we will assume that the units of ( , )A z t  are 
V

m

 
 
 

 where the 
1

m
 term comes from  

 

 

Averaging over the transverse dimensions ,dxdy and applying Fourier transform to Eq. (B.6) yields: 

2 2 2 2 2 2

0
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Substitute Eq. (B.7) into Eq. (B.8):  
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Substitute Eq. (B.10) into Eq. (B.9) yields:  

 * ) 2(B.11) ( ) ( , ) ( , ) ( , )i z

z z NLi A z A z e P z               

It is time to write down the nonlinear polarization term, assuming the electric field is polarized along x : 

2

0

0

( ) 2 ( ) ( , )

(B.12) ( ) 2 ( ) ( , )* ( , )

NL

NL

P t z E z t

P z E z E z

 

    

 


 

Substitute Eq. (B.12) into Eq. (B.11):  

Figure 32. Frequency domain field presentation 
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The electromagnetic field is composed of three pulses: the signal, the pump and the idler. We therefore  

write:  
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We start with writing the equations for the signal: s i p    . By looking on the spectral shape of the  

convolved signals one deduces:  
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Figure 33. The generated idler. Pictorial view of the convolution term in equation (B.15). 
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We define ( )( , ) ( , ) i zA z A z e  
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The equations describing the rest of the pulses can be deduced in the same manner, yielding the 

following set of equations:  
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One can define:  
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Applying complex conjugate on the equation above: 
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Define: (B.22) ( , ) ( , ) i tC z A z t e dt

 






   

one can obtain:  
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which implies: 
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Combine with Eq. (B.24):  
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We simplify the equation using the following identity: 
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Inverse transform Eq. (B.25): 
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Eq. (B.27) in the time reads:  
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The same manipulation can be done one for the pump and idler pulses, yielding the above set of 

equations:  
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10.3 Appendix C- Flux energy equation: derivation and validation 

10.3.1 The energy flux equation derivation 

Start with Maxwell equation: 

(C.1)
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B H
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t t

D
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t


 

    
 


 



 

where D is given by  0 0 0 0 1L NL NL NL NLD E P P E E P E P E P                 . 

We continue with the calculation of the energy flux density given by: 
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From Eq. (C.2) one deduces: 
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From Eq. (C.1) one deduces: 
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Incorporation of Eq. (C.4) and Eq. (C.5) into Eq. (C.3) yields the following: 
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We substitute the nonlinear polarization term into the equations, assuming that the nonlinear 

polarization is in the direction of the electromagnetic field: 
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in Eq. (C.6) take the following form: 
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Incorporation of Eq. (C.7) into Eq. (C.6) yields the following: 
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As the energy flow of the frequency generation process is in the z- direction, we are left only with the z-

derivative of the poynting vector: 
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10.3.2 The energy conservation rule 

 

Assume the electric field to be polarized along the x̂  direction, and recall the electromagnetic field 

phasor defined in Eq. (B.8): 
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We need to calculate the pointing vector S E H  . Using faraday law 
H

E
t




  


one obtain: 
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Substitute Eq. (C.10) into Eq. (C.11):  
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As pointed in section (3.5), the pointing vector S E H   is calculated without taking into account the 

nonlinear polarization contribution.  The nonlinear contribution term induced by the derivatives 

( , )z A z  and *( , )z A z    is therefore dismissed. We are left with the following magnetic field: 
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The pointing vector is therefore given by: 
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The units of S  are 
2

W

m
. In order to calculate the energy density of the electromagnetic field we 

integrate over time:  

       ( ) ( ') ' * *

(C.15) ( ) ( , )

1 ( ')
' ( , ) ( , ) ( , ') ( , ')

4 '

d z

i z i t

E z S z t dt

dfdf e e A z A z A z A z dt
       

   
 





  
  

  

 

    



  
 

Recalling that
   '1

'
i t

e dt
 

  







 
  , one obtains: 

       

     

( ) ( ')* *

'

( ) ( )* *

(C.16)

1 ' ( ')
( ) ( , ) ( , ) ' ( , ') ( , ')

4 2 '

1 ( )
( ) ( , ) ( , ) ( , ) ( , )

4 2

i z

d

i z

d

d
E z d A z A z e A z A z

d
E z A z A z e A z A z

   

 

   

  
       

  

  
   

  

 
 


 


  



     

 
     

 



 

 Recall that
 

( )
n

c

 
   , hence 

( ) ( )   

 


  , so Eq. (C.16) reads: 

   * *1 ( )
(C.17) ( ) ( , ) ( , ) ( , ) ( , )

4
dE z df A z A z A z A z

 
   

 





       

*( , ) ( , ) ( , ) ( , ) 0A z A z A z A z        because ( , )A z   exist only for 0  . 

     2 2* *1 ( ) ( )
(C.18) ( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

4 4
dE z df A z A z A z A z df A z A z

   
     

  

 

 

         

 

( , ) ( , )A z A z   , hence  

2 2 2 2

0 0 0 0

( ) ( ) ( ) ( )
(C.19) ( ) 2 ( , ) ( , ) ( , ) ( , )

4 2 2 2
d

n n
E z df A z df A z df A z df A z

c c

      
   

   

   

        

0

00

1
c


  


   , hence: 

2

00

( )
(C.20) ( ) ( , )

2

A C

d

n
E z df A z
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The total electromagnetic flux is therefore given by: 

 
2 2 2

00

( )
(C.21) ( , ) ( , ) ( , ) ( , )

2
z i p s

n
S z t dt df A z A z A z


  



 



     

In the following it is demonstrated that the following energy term is conserved through the propagation: 

 
2 2 2

00

( )
( ) ( , ) ( , ) ( , )

2
d i p s

n
E z df A z A z A z


  





    

In other words ( )
0.ddE z

dz
  

2 2 2

0

( , ) ( , ) ( , )( )
(C.22) ( ) ( ) ( )

2

p s id
d A z d A z d A zdE z df

n n n
dz c dz dz dz

  
  



  
   
 
 

  

The equations describing the propagation are (Eq. set. (3.13)):  

*

*

( )
( , ) ( ) ( , ) ( , )* ( , )

( )

( )
( , ) ( ) ( , ) ( , )* ( , )

( )

( )
( , ) ( ) ( , ) ( , )* ( , )

( )

z s s i p

z p p s i

z i i s p

z
A z i A z i A z A z

c n

z
A z i A z i A z A z

c n

z
A z i A z i A z A z

c n

 
     



 
     



 
     



   

    

    

 

For ease we write from now on: ( , ) ( , )A z z    , hence:  

*

*

( )
(C.23) ( , ) ( ) ( , ) ( , )* ( , )

( )

( )
( , ) ( ) ( , ) ( , )* ( , )

( )

( )
( , ) ( ) ( , ) ( , )* ( , )

( )

z

z

z

z
S z i S z i I z P z

c n

z
P z i P z i S z I z

c n

z
I z i I z i S z P z
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Start with the Pump:  

 2 * *
*

* *

* *

(C.24)

( , ) ( , )( , ) ( , ) ( , )
( ) ( ) ( , ) ( , ) ( )

( )
( , )* ( , ) ( ) ( , ) ( , )

( )

( )
( , )* ( , ) ( ) ( , ) ( , )

( )

d P z P zd P z dP z dP z
n n P z P z n

dz dz dz dz

z
i S z I z i P z P z

c n

z
i S z I z i P z P z

c n

   
    

 
     



 
     



 
    

 

  
    
 
 
    
 

 * * *

( )

( ) ( , )* ( , ) ( , ) ( , )* ( , ) ( , )

n

i z S z I z P z S z I z P z
c




      


 




    

 

By repeating the same procedure to both the signal and idler pulses one obtain: 

* * *

* * *

2

0 * * *

( , )* ( , ) ( , ) ( , )* ( , ) ( , )
( ) ( )

(C.25) ( , )* ( , ) ( , ) ( , )* ( , ) ( , )
4

( , )* ( , ) ( , ) ( , )* ( , ) ( , )

d

I z P z S z I z P z S z
dE z i z

S z I z P z S z I z P z d
dz c

S z P z I z S z P z I z

     


       


     


  
 

     
 

   

  

All the signals written here exist only for 0   so the lower bound can be stretched:  

* * *

* * *

2

* * *

( , )* ( , ) ( , ) ( , )* ( , ) ( , )
( ) ( )

(C.26) ( , )* ( , ) ( , ) ( , )* ( , ) ( , )
4

( , )* ( , ) ( , ) ( , )* ( , ) ( , )

d

I z P z S z I z P z S z
dE z i z

S z I z P z S z I z P z d
dz c

S z P z I z S z P z I z

     


       


     





  
 

     
 

   

  

Define  

 * * *(C.27) ( , )* ( , ) ( , ) ( , )* ( , ) ( , ) ( , )* ( , ) ( , )I z P z S z S z I z P z S z P z I z d          




     

 

Therefore Eq. (C.26) can be written as:  

 *

2

( ) ( )
(C.28)

4
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Let’s start:  

 

* *

' ''

*

*

(C.29) ( , )* ( , ) ( , ) ( , ') ( , ') ( , ) '

' '' ( , ') ( , '') ( , '' ') '

' ( , ') ( , '') ( , '' ') '

A

I z P z S z d I z P z S z d d

I z P z S z d d

I z P z S z d d

  

           

       

       

  

    

 

 

 

 

  

   

  

  

 

 
*'' ( , ') ( , '') ( , '' ') '

B

I z P z S z d d     
 

 

 

 

Continue with term A:  

* *

''

(C.30) ' ( , ') ( , '') ( , '' ') ' ' ( , ') ( , ) ( , ' ) 'I z P z S z d d I z P z S z d d

 

             
   

   

       

 

* *
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Term B:  

* *

'

* *

''

(C.31) '' ( , ') ( , '') ( , '' ') ' '' ( , '') ( , ) ( , '' ) '

'' ( , '') ( , )* ( , ) '' ( , ) ( , )* ( , )

I z P z S z d d P z I z S z d d

P z I z S z d P z I z S z d

 

 

             

         

   

   

 


 

    

   

   

 

 

Substituting Eq. (C.30) and Eq. (C.31) into Eq. (C.29) yields:  

 

* * *

* * *

(C.32) ( , )* ( , ) ( , ) ( , ) ( , )* ( , ) ( , ) ( , )* ( , )
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I z P z S z d I z P z S z d P z I z S z d
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 0   

In the following we proved that 0,  hence  *

2

( ) ( )
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4

ddE z i z

dz c
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10.4 Appendix D- DFG compression scheme optimization  
 

10.4.1 DFG compression feasibility dependence with signal chirp 

 

We recall 
opt defined in Eq. (7.6)  opt compensation optSLM L  , where 

optL are the discrete set of 

silicone lengths for which the phase range needed to be compensated by the SLM, defined in Eq. (7.5) 

   
1.8 5.5 1.8 5.5

max min
i i

compensation m m m m
SLM Idler Phase Idler Phase

        
  is minimal. 

Numerical trial and error examinations show that good SLM compensation can be done whenever 

350[Rad]opt  , hence, we used 
opt as a measure to the compression feasibility and  simulated  it for 

various values of signal chirp and air lengths before and after the nonlinear crystal. 

The results are presented in the following tables, with the highlighted colors defined below: 

opt value[Rad] Highlighted color 

350[Rad]opt    

200[Rad] 350[Rad]opt     

100[Rad] 200[Rad]opt    

100[Rad]opt    

 

The greener the color is, the compensation scheme is better.  

 

Observing the tables below several conclusions can be deduced:  

 

 It is easier to compress the MIR pulse in the regime 27 27 2[ 4 10 1 10 ][ ]sC s     . 

 For a given air propagation lengths, the shorter the crystal the compensation is better (less 

phase to compensate). 

 The transform limit case is not inferior in terms of compensation vs. other signal chirps. 
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6[m]Lair8[m]Lair10[m]LairChirp 10^-25[s^2]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]-5

485.5493.616.43431.5413.119.15456.1431.717.56

387.1361.820.75333.6338.823.47369.7337.621.88L_air_before

290.5281.325.08238.3223.127.80280.5281.026.203[m]

203.7207.229.40148.8121.532.12187.3179.430.52

130.276.633.7291.135.336.43103.247.934.84

78.633.738.03102.929.239.15

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]-4

465.0453.812.11493.4488.110.51439.4408.713.23

378.4321.316.43397.7382.114.83341.6320.617.55L_air_before

287.0244.220.74311.9273.219.15246.2213.221.873[m]

193.2172.925.07229.7184.523.47166.8112.526.20

107.672.629.39143.6113.727.7997.552.830.51

95.815.933.7084.419.832.11105.421.634.83

158.324.538.03128.017.236.43188.7123.639.15

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

347.8270.512.10391.9339.710.50338.0260.613.23-3

254.3212.416.42294.6219.014.82241.9183.117.54

174.2126.020.74200.5142.819.14150.694.121.86L_air_before

101.546.525.06113.872.223.4692.525.226.193[m]

98.929.829.3877.519.427.78123.016.930.51

181.130.833.70157.727.832.11198.448.134.83

267.5118.138.02243.9118.236.42295.281.839.15

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

247.4210.012.09280.0226.110.50214.8177.213.22-2

155.4130.616.41195.4161.914.81138.1102.917.54

93.645.320.73107.586.819.1375.225.921.85L_air_before

120.116.525.0694.010.523.45137.810.826.183[m]

194.054.729.38160.79.727.78222.167.230.50

290.356.833.70245.755.732.10309.494.634.82

388.6217.338.02340.6226.936.42397.9341.939.14

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

144.9136.312.09161.9187.210.49113.4118.213.21-1

75.348.516.40101.0101.514.8086.527.217.52

131.128.320.72108.511.119.12148.528.521.85L_air_before

214.611.525.05191.25.223.44239.844.126.183[m]

301.557.429.37277.843.127.77337.081.430.50

389.7183.133.69366.0127.232.09431.5347.734.81

486.4391.938.01455.1341.836.41

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

81.835.812.0783.589.610.4889.34.413.20TL

143.917.216.40111.210.014.80169.829.117.52

234.819.120.72193.013.119.12255.337.421.84L_air_before

331.837.025.05283.831.923.44342.934.226.173[m]

423.1164.829.36382.5114.127.77433.9251.830.49

482.0267.432.09

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

162.317.612.07139.53.910.47185.225.313.201

246.717.916.39223.218.814.79280.114.517.52

334.139.520.71310.443.419.11375.383.421.83L_air_before 3[m]

427.8131.525.04399.0114.423.43464.7165.126.16

488.3218.027.76

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

275.89.312.07228.013.710.47288.225.613.192

367.457.816.38325.114.914.79376.152.517.51L_air_before 3[m]

456.6151.320.70423.9114.719.11475.5199.521.83

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

370.827.312.06344.734.010.46409.753.513.183

470.3199.216.38433.353.114.78499.1200.717.50L_air_before 3[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]4

491.0136.212.05466.286.810.460.00.00.00L_air_before 3[m]
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  Chirp 10^-25[s^2]6[m]Lair8[m]Lair10[m]LairChirp 10^-25[s^2]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]-5

451.19440.0017.79495.96480.4316.19431.63388.5018.92

353.38282.7322.11397.35377.1720.51343.67298.0823.23

262.59213.6026.44300.27244.5024.83247.78205.8527.56

183.01130.0130.76206.68177.1529.16157.07125.7831.88

108.59102.8335.07122.7198.3633.4894.4734.3836.20

92.0165.5039.3970.9966.9437.79L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]-4

440.56410.7613.47460.45458.3711.87404.83373.0014.59

349.87335.1117.78373.54288.7716.19307.74265.0818.91

253.61221.4522.10288.92244.1120.51223.89170.8223.23

162.16124.8726.43201.77153.0724.82147.8494.0227.56

95.4943.2730.75114.7270.0829.1577.0436.4131.87

119.8722.0535.0695.7423.0333.47129.5829.7736.19

189.15151.0439.39152.5567.3037.79L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

315.44311.3013.46357.06357.1811.86399.77362.2810.27-3

231.98235.5817.78260.77288.9516.18303.62317.4414.58

154.83133.8922.10168.83174.4820.50208.81234.4818.90

77.6152.2226.42106.4885.9624.82120.75126.9223.22

122.6329.6130.74100.1172.6929.1482.5332.2527.54

206.30201.2835.06182.82102.6333.46147.0131.3131.87

293.26523.5339.38269.60334.2237.78234.02155.4836.19L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

213.96258.5913.45256.04314.6911.85275.07325.9510.26-2

124.85150.6917.77163.01208.9116.17193.58212.0014.58

79.7570.3622.0886.5392.9620.49114.40133.9718.89

143.3223.5826.42110.7042.7524.8185.7413.9923.21

229.63103.9930.74185.3123.7629.14162.1123.4227.54

326.31484.2935.05278.58164.9233.46247.4781.0731.86

415.27997.2039.37377.19619.5037.78335.13459.0936.18L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]-1

118.49185.6413.44138.64202.6811.85169.58263.1710.25

84.5128.5417.7673.2783.0516.1696.89106.5814.57

155.0349.3822.08132.2112.2120.48109.539.7918.88

239.7180.2226.41216.2169.6124.80180.7424.6223.21

327.03216.3930.73303.36163.7129.13275.83138.4827.54

423.32770.8535.05391.76601.1133.45368.09380.4931.85L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]TL

102.3110.3713.4390.1727.3711.8478.6080.9810.24

176.2023.0217.76134.5516.4416.16112.124.8314.56

270.8275.8822.08223.0227.4720.48194.3418.8618.88

359.77154.1626.40320.33132.9824.80280.5131.2423.20

448.89633.2630.72419.16387.8829.13371.11172.4927.53L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]1

102.3110.3713.4390.1727.3711.8478.6080.9810.24

271.9577.4417.75248.3632.1116.15220.6731.3314.56

365.22164.4622.07335.9796.7920.47312.3095.4018.87

464.78338.2226.40424.70338.9624.79401.04154.4623.19L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]

304.5713.9213.42264.2231.0711.83226.9514.4810.232

392.9967.0317.74361.8710.0216.15313.8459.0114.55

482.28274.5022.06458.68192.7220.46412.80136.3718.87L_air_before 4[m]

Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]Phi_opt[rad]Delta_SLM[rad]L_opt[mm]3

407.7297.1913.42370.0092.5811.82346.3367.5710.22L_air_before 4[m]
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10.4.2 Signal conversion efficiency dependence with signal chirp, after SLM compensation 

 

We display the conversion efficiency dependence with the signal chirp.  

We define the following quantities: 

 

 
( )

( )

Idler f

E

Signal i

E z

E z
  - the DFG conversion efficiency. 

 ( ( ))std   - A measure to the frequency conversion dependence with wavelength. 

 
s  is the signal duration (10%-90% knife edge definition) of the signal pulse (modulated 

by the SLM) in the beginning of the crystal.  

 

The simulated quantities are exhibited for different values  of signal chirp, and for a span of air lengths 

before and after the nonlinear crystal. The results are presented in the following tables, with the 

highlighted colors defined below: 

 

( )
[%]

( )

Idler f

E

Signal i

E z

E z
   

Highlighted color 

25% E   

20% 25%E    

15% 20%E    

15%E    

 

Several conclusions can be deduced from the tables below: 

 The longer the signal goes through the air, the efficiency deteriorates. 

 For a given air propagation lengths, the shorter the crystal the efficiency is better. 

 For a given air propagation lengths, the longer the crystal the better the conversion efficiency 

vs lambda: ( ( ))std   is lower. 

 The transform limit case is not inferior in terms of efficiency vs. other signal chirps. 

 
27 27 2[ 2 10 1 10 ][ ]sC s      is good range in terms of efficiency. 

 

  



 Efficient adiabatic frequency conversions for ultrashort pulses 

100 

  6[m]Lair8[m]Lair10[m]LairChirp 10^-25[s^2]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]-5

0.2319%4.7117.790.2320%6.2016.190.2319%4.8118.92

0.2218%4.8622.110.2318%4.7520.510.2217%4.8423.23

0.2217%5.0926.440.2217%4.9524.830.2216%5.0827.56

0.2216%5.3030.760.2216%5.1729.160.2116%5.2731.88

0.2216%5.4435.070.2216%5.4133.480.2216%5.5836.20

0.2316%5.7839.390.2216%5.6237.79L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]-4

0.2321%4.1513.470.2423%4.1111.870.2220%3.7214.59

0.2118%3.7417.780.2219%3.7816.190.2118%3.8218.91

0.2016%3.9122.100.2117%3.9520.510.2016%4.0623.23

0.2016%4.1626.430.2015%4.0524.820.2016%4.3127.56

0.2015%4.4630.750.2015%4.2929.150.2015%4.4631.87

0.2115%4.7135.060.2116%4.6233.470.2216%4.9236.19

0.2216%5.4039.390.2216%5.1737.79L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2120%2.8613.460.2222%2.8411.860.2627%2.9610.27-3

0.1917%2.9417.780.1917%2.8516.180.2018%2.7814.58

0.1816%3.1522.100.1816%3.0320.500.1816%2.9218.90

0.1715%3.3226.420.1815%3.3224.820.1815%3.1723.22

0.1915%3.9030.740.1815%3.6629.140.1714%3.3827.54

0.2015%4.6435.060.2015%4.3633.460.2015%4.0831.87

0.2014%5.2039.380.2015%5.0537.780.2015%4.7936.19L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.1919%1.9513.450.2122%1.9211.850.2527%2.0210.26-2

0.1616%2.0617.770.1716%1.9616.170.1818%2.0314.58

0.1514%2.3522.080.1615%2.1820.490.1615%2.0518.89

0.1715%3.1026.420.1615%2.8424.810.1614%2.5623.21

0.1815%3.8230.740.1814%3.5629.140.1714%3.2827.54

0.1814%4.5435.050.1814%4.2633.460.1814%4.0331.86

0.1813%5.0339.370.1813%4.7437.780.1814%4.5836.18L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]-1

0.1617%1.1013.440.1921%1.1611.850.2326%1.1510.25

0.1415%1.5917.760.1415%1.3616.160.1517%1.2114.57

0.1514%2.3122.080.1414%2.0320.480.1414%1.7718.88

0.1614%3.0926.410.1614%2.8124.800.1614%2.5423.21

0.1613%3.7230.730.1613%3.5229.130.1614%3.2627.54

0.1613%4.2835.050.1613%4.1133.450.1613%3.9131.85L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]TL

0.1416%1.0113.430.1820%0.8511.840.2325%0.7110.24

0.1515%1.6117.760.1415%1.3616.160.1416%1.1514.56

0.1514%2.3522.080.1514%2.0620.480.1414%1.7918.88

0.1513%3.0326.400.1513%2.7824.800.1513%2.5323.20

0.1512%3.6230.720.1512%3.3929.130.1513%3.1627.53L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]1

0.1616%1.5113.430.1820%1.3611.830.2325%1.1310.24

0.1514%1.9917.750.1514%1.8316.150.1616%1.5714.56

0.1513%2.5022.070.1513%2.3320.470.1513%2.1818.87

0.1512%3.0426.400.1512%2.8624.790.1512%2.6623.19L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.1716%2.3813.420.1919%2.1511.830.2324%2.0110.232

0.1613%2.9517.740.1614%2.6516.150.1615%2.4914.55

0.1612%3.4922.060.1612%3.5520.460.1613%3.6018.87L_air_before 4[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]3

0.1815%4.9613.420.1918%3.5611.820.2222%2.9110.22L_air_before 4[m]
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6[m]Lair8[m]Lair10[m]LairChirp 10^-25[s^2]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]-5

0.2928%6.4116.430.2827%4.9019.150.2828%6.0217.56

0.2827%4.7420.750.2726%4.8623.470.2827%4.9221.88L_air_before 3[m]

0.2725%4.9725.080.2724%5.0527.800.2725%4.9626.20

0.2725%5.2329.400.2724%5.3232.120.2624%5.1830.52

0.2724%5.4633.720.2723%5.4836.430.2724%5.4634.84

0.2723%5.6838.030.000%0.000.000.2723%5.7039.15

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]-4

0.3031%5.2512.110.3235%5.1110.510.2930%4.7613.23

0.2828%3.7616.430.2829%3.8814.830.2727%3.7317.55L_air_before 3[m]

0.2625%3.8020.740.2727%3.8519.150.2626%3.9421.87

0.2524%4.0725.070.2625%4.1023.470.2625%4.2226.20

0.2624%4.3529.390.2524%4.2027.790.2523%4.3830.51

0.2623%4.5433.700.2623%4.5132.110.2623%4.7134.83

0.2723%5.2338.030.2723%4.9836.430.2722%5.4439.15

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2931%2.8412.100.3134%2.8410.500.2830%2.8913.23-3

0.2627%2.8416.420.2728%2.8114.820.2526%2.8317.54

0.2526%3.0720.740.2526%2.9319.140.2425%3.0621.86L_air_before 3[m]

0.2423%3.2225.060.2425%3.2223.460.2424%3.3826.19

0.2523%3.6929.380.2423%3.4527.780.2523%3.8830.51

0.2523%4.4133.700.2523%4.1432.110.2523%4.6234.83

0.2522%5.0838.020.2522%4.8936.420.2421%5.2039.15

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2832%1.9312.090.3136%2.0410.500.2730%1.9813.22-2

0.2427%1.9916.410.2528%1.9314.810.2426%2.1117.54L_air_before 3[m]

0.2325%2.2320.730.2325%2.1019.130.2324%2.3321.85

0.2424%2.8825.060.2324%2.6023.450.2323%3.0626.18

0.2423%3.6429.380.2423%3.3227.780.2422%3.8330.50

0.2321%4.2933.700.2322%4.0632.100.2321%4.4534.82

0.2320%4.8238.020.2321%4.7136.420.2320%5.0239.14

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2731%1.1912.090.3035%1.1710.490.2528%1.1313.21-1

0.2225%1.3916.400.2326%1.2014.800.2224%1.5617.52

0.2224%2.0820.720.2224%1.7919.120.2324%2.2821.85L_air_before 3[m]

0.2223%2.8425.050.2223%2.5623.440.2223%3.0726.18

0.2221%3.5829.370.2222%3.3427.770.2221%3.7330.50

0.2220%4.1433.690.2120%3.9632.090.2220%4.4034.81

0.2119%4.6738.010.2119%4.5536.41

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2529%0.8712.070.2934%0.7410.480.2328%0.9913.20TL

0.2225%1.4016.400.2326%1.1814.800.2224%1.5717.52L_air_before 3[m]

0.2223%2.1020.720.2224%1.8219.120.2123%2.3021.84

0.2121%2.8225.050.2122%2.5823.440.2121%3.0426.17

0.2120%3.5229.360.2120%3.2527.770.2120%3.6830.49

0.2019%3.7632.09

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2529%1.3712.070.2934%1.2410.470.2427%1.4413.201

0.2224%1.8216.390.2225%1.6814.790.2223%1.9117.52L_air_before 3[m]

0.2122%2.3520.710.2122%2.2019.110.2121%2.5321.83

0.2020%2.8725.040.2120%2.6723.430.2019%3.0826.16

0.2019%3.2627.76

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2528%2.1512.070.2933%2.0410.470.2326%2.3513.192

0.2222%2.7916.380.2324%2.5014.790.2122%2.8917.51L_air_before 3[m]

0.2120%3.5120.700.2121%3.5619.110.2120%3.4121.83

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]

0.2526%3.1212.060.2830%2.9710.460.2324%3.3413.183

0.2221%4.8016.380.2322%4.9314.780.2220%4.7417.50L_air_before 3[m]

std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]std(Eta)Eta[%]Tau_s[ps]L_opt[mm]L_air_before 3[m]

0.2424%6.1112.050.2828%6.1310.464
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10.4.3 Transform limited examination 

We examine the transform limited case thoroughly. As before, the  simulated quantities are exhibited 

for different values  of signal chirp, and for a span of air lengths before and after the nonlinear crystal. 

The results are presented in the following tables, with the highlighted colors defined below: 

( )
[%]

( )

SHG f

E

Pump i

E z

E z
   

Highlighted color 

45%E    

40% 45%E    

30% 40%E    

20% 30%E    

10% 20%E    

compensationSLM value[Rad] Highlighted color 

350[Rad]compensationSLM    

200[Rad] 350[Rad]compensationSLM    

100[Rad] 200[Rad]compensationSLM    

100[Rad]compensationSLM    

( ( ))[%]std    Highlighted color 

25%    

22% 25%    

20% 22%    

18% 20%    

16% 18%E    

16%E    

 

Several conclusions can be deduced from the tables below: 

 In terms of both conversion efficiency and compensation quality we wish the crystal 

length to  be ~ 10mm 

 The longer the signal goes through the air, conversion efficiency fluctuation is smaller 

( ( ))std   . 

 The following useful formula is deduced: 

    , 7.76  4.31 n +5.68 L [ ] 3 0.795 [ ] 6n m before after

crystal air airL m m L m mm       
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6[m]Lair8[m]Lair10[m]Lair

Phi_opt[Rad]std(Eta)Eta[%]L_opt[mm]Phi_opt[Rad]std(Eta)Eta[%]L_opt[mm]Phi_opt[Rad]std(Eta)Eta[%]L_opt[mm]

116.650.2730%7.76149.870.2528%6.1699.210.2933%8.893[m]

78.560.2529%12.0776.680.3035%10.4890.910.2428%13.20

138.400.2225%16.40111.140.2326%14.80159.590.2225%17.53

233.760.2123%20.72196.290.2224%19.12256.190.2123%21.84

315.490.2121%25.04285.760.2122%23.44341.270.2121%26.17

417.210.2120%29.36380.310.2120%27.77440.210.2119%30.48

95.190.2832%9.18122.280.2528%7.58145.890.2325%5.993.25[m]

95.950.2124%13.4970.410.2327%11.9085.300.2832%10.30

172.280.2022%17.82144.030.2022%16.22116.410.2023%14.62

253.970.2020%22.14223.080.2021%20.54194.110.2021%18.94

352.630.1918%26.46321.560.1919%24.87282.800.1920%23.27

441.070.1917%30.78405.520.1918%29.18375.530.1918%27.58

148.330.2123%6.2897.860.2629%9.00123.110.2325%7.403.5[m]

75.720.2630%10.6090.660.1922%13.3279.340.2225%11.72

113.730.1821%14.92162.350.1819%17.64134.490.1820%16.04

197.370.1819%19.24259.140.1818%21.96225.660.1819%20.37

288.770.1817%23.56342.560.1817%26.28311.460.1817%24.68

381.600.1816%27.88443.330.1816%30.60410.870.1816%29.01

473.490.1815%32.20496.580.1715%33.33

119.030.2122%7.70144.050.1920%6.10101.300.2325%8.823.75[m]

72.750.1922%12.0183.870.2427%10.4192.160.1719%13.14

145.920.1618%16.34119.080.1618%14.74168.310.1617%17.46

226.020.1616%20.66196.990.1616%19.06248.320.1716%21.79

322.800.1615%24.98283.990.1615%23.38348.630.1614%26.10

408.620.1614%29.30378.620.1614%27.70432.510.1614%30.43

471.810.1614%32.02

96.540.2324%9.12121.590.1919%7.52155.170.1718%5.924[m]

90.440.1517%13.4478.670.1820%11.8480.460.2225%10.24

165.140.1415%17.76137.220.1415%16.16109.930.1416%14.56

262.150.1513%22.08226.770.1514%20.48188.820.1514%18.89

344.350.1513%26.40314.520.1513%24.80284.770.1513%23.20

446.460.1512%30.72412.190.1512%29.12373.010.1513%27.53

499.750.1512%33.44469.540.1512%31.84

142.530.1516%6.2299.840.2020%8.94120.720.1717%7.354.25[m]

82.440.2022%10.5394.770.1314%13.2669.280.1618%11.66

119.700.1314%14.86171.160.1212%17.58138.750.1313%15.99

199.880.1312%19.18251.300.1412%21.90222.020.1412%20.30

285.210.1412%23.50351.740.1411%26.22314.210.1412%24.63

381.720.1411%27.82434.740.1411%30.54404.650.1411%28.94

473.150.1410%32.14
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While ( ( ))std   gives some intuition about the conversion efficiency, it is more informative to 

visually observe the conversion efficiency curves. For demonstration, we plot the conversion efficiency 

curves for different crystals lengths and for different air propagation lengths: 3m and 4.25m.  

Figure 34. Conversion efficiency dependence with crystal length for different air propagation lengths. 
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We can visually deduce from the above what schemes are good in terms of conversion efficiency. We 

label good schemes with green (left columns): 
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10.5 Appendix E- Pulsed four wave mixing interactions derivation  
 

We describe the time dependent evolution of Four Wave Mixing in dielectrical waveguides via third 

order susceptibility. Let’s assume we are operating in a single mode waveguide.  

 * ( , )

( , )

1
(E.1) ( , ) ( , ) ( , , )

2 2

i z z i t

t t

E z

d
E A z A z E x y e e  




  









    

Let’s write Maxwell Equations in the time domain:   

(E.2) ( , )

(E.3) ( , ) ( , ) ( , )NL
NL

B
E E z i B i H

t

PE
H H z i E z i P z

t t

  

     


       




     

 

 

Let’s write Eq. (E.2) and Eq. (E.3) for two fields labeled 1 and 2:  

1 1

,11 1

2 2

,22 2

(E.4) ( , )

(E.5) ( , ) ( , ) ( , )

(E.6) ( , )

(E.7) ( , ) ( , ) ( , )

NL

NL

E z i H

H z i E z i P z

E z i H

H z i E z i P z

 

    

 

    

  

  

  

  

 

Using the following identity: 

     (E.8) a b b a a b         

It is easy to deduce:  

   * * * *
,2 ,11 2 2 1 1 2(E.9) NL NLE H E H i E P E P         

We can therefore write:  

     

     

* * * * * *

1 2 2 1 1 2 2 1 1 2 2 1

* * * * * *

1 2 2 1 1 2 2 1 1 2 2 1

0

(E.10) z t t t t tz t

z t t t t z t t t tz t

E H E H dxdy E H E H dxdy E H E H dxdy

E H E H dxdy ds E H E H n E H E H dxdy

              

              

  

  

Let’s assume that 2E  is a waveguide mode. Hence, it solves Eq. (E.6) and Eq. (E.7) with 
,2 ( , ) 0NLP z   . 

We’ll therefore get (Eq. (E.9) together with Eq. (E.10)):  
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 * * *
,11 2 2 1 2(E.11) NLz t t t t z

E H E H dxdy i E P dxdy        

Now, let’s expand the electric field in terms of its eigenmodes, recalling that field 2 is an eigenmode: 

( , )

1

( , )

1

( , )

2

( , )

2

(E.12) ( , ) ( , )

( , ) ( , )

(E.13) ( , ) ( , )

( , ) ( , )

v

v

i z z

t v tv

v

i z z

t v tv

v

i z z

t t

i z z

t t

E A z e E x y

H A z e H x y

E A z e E x y

H A z e H x y





 

 

 

 

 

 




























 

Substitution Eq. (E.12),(E.13)  into Eq. (E.11) and using the orthogonally relation, yields:  

* 1
(E.14) ( , ) ( , )

2
t tv vE x y H x y dxdy    

 * ( , )
,1

( , )
(E.15) ( , ) i z z

NL t

dA z
i P z E e dxdy

dz

  




     

It’s time to describe the nonlinear third order susceptibility phasor of a centrosymmetric homogenous 

material. It can be shown that the third order susceptibility phasor elements that contribute to the 

polarization in the x direction are: 

3
3(E.16) : ,

3
x xxxx xxyy xyyx xyxyP


         

And to the polarization in the y direction:  

3
3(E.17) : ,

3
y yyyy yyxx yxxy yxyxP


         

We can therefore write:  

 

 

3 2 2 23
0 3 0 0 3

3 2 2 23
0 3 0 0 3

(E.18) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( )
3

(E.19) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( )
3

x x x y x x y

y y y x y x y

P t E t E t E t E t E t E t

P t E t E t E t E t E t E t
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0 3

,

0 3

,

0 3

,

(E.20) ( ) ( ) ( ) ( )

(E.21) ( ) ( ) ( ) ( )

(E.22) ( , ) ( , )* ( , )* ( , )

j j

j x y

k j j k

j x y

k j j k

j x y

P t E t E t E t

P t E t E t E t

P r E r E r E r

 

 

     







 
  

 

 
  

 









 

where k stands for the transverse indexes, x or y.  

We wish to incorporate Eq. (E.22) into Eq. (E.15): 

 * ( , ) ( , ) *

,

( , ) *

0 3

, ,

( , )
(E.23) ( , ) ( , )

( , )
( , )* ( , )* ( , ) ( , )

i z z i z z

t k t k

k

i z z

j j k k

k x y j x y

dA z
i P r E e dxdy i e P r E dxdy

dz

dA z
i e E r E r E r E r dxdy

dz

    



  


   


     

 

    

 

 

 

 

We substitute the electric field phasor as defined in Eq. (E.1):  

 * ( , )1
( , ) ( , ) ( , ) ( , , )

2

i z z

tE z A z A z E x y e          

We assume that 4 pulses are inserted into our grating. We write the fields amplitude as superposition of 
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In order to simplify the convolution integral, we assume that the electric field profile merely changes 

within the spectral envelope of the pulses. In order words: 

   ( , ) * ( , ) *(E.26) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )i z z i z z

j jE r e A z A z E r e A z A z   

                

We denote ( , )E r E   . Under the following simplification, Eq. (E.25) considerably simplifies: 
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We continue with writing the equations for 1( , )A z  . The frequency generation terms that contributes 

to 1( , )A z   are the following: 
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The equations describing 1( , )A z  are introduced: 
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The equations describing 2( , )A z  are deduced by replacing 1→2, 2→1. 
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The equations describing 3( , )A z  are deduced from the equations describing the spectral amplitude of 

1( , )A z  by replacing 1→3, 2→4, 3→1, 4→2: 
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The equations describing 4( , )A z  are deduced from the equations describing the spectral amplitude of 

3( , )A z  by replacing 3→4, 4→3. 
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We define the following integrals:  
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The equations deduced are the following: 
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Using the same mechanism presented in Eq. sets (B.23) – (B.27), the equation in the time domain reads: 
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In the same manner we deduce: 
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one effectively occurs within ,effL   centered around ∆𝑘 = 0. Graphs are taken with permission from Ref. [14]. ... 21 
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in partial fulfillment of the requirements for the degree of Master of Science in Physics 

 

Abstract   

Sensing ultrafast phenomena’s demands ultrafast sources in diverse spectral regimes. Such inherently 

broadband   source can  among  others  be generated using frequency  conversion of  an  ultrafast pulse.  

In this thesis, we developed a framework for nonlinear optical generation of ultrashort pulses through 

adiabatic frequency conversions evolution, incorporating both numerical evaluations and experimental 

validations. These include generalization of the frequency conversion process to the ultrashort regime, 

developing the numerical simulation for the nonlinear processes, and obtaining a robust general scheme 

for the design of adiabatic varying phase mismatch crystals also applicable to high-order QPM 

techniques. With the latter we design and investigate a novel SHG crystal with unmatched robustness 

under both environmental conditions and characteristics of the incoming pulse, demonstrate pulse 

shaping using spectral phase manipulations  done before the nonlinear crystal, and obtain a design of an 

efficient robust optical scheme for a DFG pulse compression, with the incorporation of  two photon 

absorption,  a parasitic effect that has been lacking in all previous research on adiabatic frequency 

conversion, and which was found to be of great importance. Finally, we present the concept of adiabatic 

Four Wave Mixing frequency conversion. We present a general propagation equation for four-wave 

mixing derived from Maxwell’s equations, capturing the full frequency and time domain nonlinear pulse 

propagation effects for wave-guided interactions. Last, we present that the obtained equations can be 

simplified to reveal the SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage 

in other two-level atomic systems. 
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