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Abstract

Sensing ultrafast phenomena’s demands ultrafast sources in diverse spectral regimes. Such inherently
broadband source can among others be generated using frequency conversion of an ultrafast pulse.
In this thesis, we developed a framework for nonlinear optical generation of ultrashort pulses through
adiabatic frequency conversions evolution, incorporating both numerical evaluations and experimental
validations. These include generalization of the frequency conversion process to the ultrashort regime,
developing the numerical simulation for the nonlinear processes, and obtaining a robust general scheme
for the design of adiabatic varying phase mismatch crystals also applicable to high-order QPM
techniques. With the latter we design and investigate a novel SHG crystal with unmatched robustness
under both environmental conditions and characteristics of the incoming pulse, demonstrate pulse
shaping using spectral phase manipulations done before the nonlinear crystal, and obtain a design of an
efficient robust optical scheme for a DFG pulse compression, with the incorporation of two photon
absorption, a parasitic effect that has been lacking in all previous research on adiabatic frequency
conversion, and which was found to be of great importance. Finally, we present the concept of adiabatic
Four Wave Mixing frequency conversion. We present a general propagation equation for four-wave
mixing derived from Maxwell’s equations, capturing the full frequency and time domain nonlinear pulse
propagation effects for wave-guided interactions. Last, we present that the obtained equations can be
simplified to reveal the SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage
in other two-level atomic systems.
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1. Introduction

Frequency generation processes has been a subject for a vast research in the field of nonlinear optics.
The ability to alter the frequency of an input electromagnetic irradiance has been in the focus of diverse
research areas since the first demonstration of frequency doubling right after introducing the laser [1]. It
revolutionized the field of light matter interaction, allowing new ways for exploring atomic, molecular
and condensed matter systems. Among those research areas one can name nonlinear spectroscopy,
metallurgy, photoinduced dynamics, condensed matter dynamics, noninvasive background free
diagnostics, and the generation of new color sources [2] [3] [4] [5].

It is, however, generally difficult to obtain efficient and robust frequency conversion from a
pump pulse to its harmonics for a broad range of colors in a single nonlinear crystal. This is mainly due
the lack of phase mismatch (lack of momentum conservation) between the interacting waves, which
conventionally can be compensated only for a narrow band of frequencies. Though, in the past, several
methods were suggested to deal with the conversion of a broadband source, such as short birefringent
crystals, multi-periodic modulation, chirp patterns [6] [7] [8] [9], temperature gradient manipulations
[10] [11] or random oriented crystal [12]. Those indeed achieved very broadband conversion, but at the
expense of limited conversion efficiencies.

In recent years, a new direction in frequency conversion has emerged - adiabatic frequency
conversion - a method that is based on adiabatic evolution of the nonlinear optics dynamics. The
suggested method enables to overcome the tradeoff between conversion efficiency and bandwidth [13]
[14]. Though it was first considered theoretically for SHG by Baranova [15], the initial extensive
experimental research was performed in sum/difference frequency conversion (SFG/DFG) in the
undepleted pump approximation, offering the use of SU(2) dynamical symmetry with the analogous
mechanism of Landau- Zener transition [16].

In the past few years, the fully nonlinear regime received a special attention. Research on
adiabatic interactions with nonlinear dynamics as adiabatic OPA and OPO was conducted by Phillips et
al. [17] [18], Heese et al. [19] [20] [21] and Yaacobi [22]. In parallel, adiabatic DFG allowed an efficient
conversion of near-IR few cycle pulses to an octave-spanning mid-IR pulses [23] [24].

A general, physical model of adiabatic frequency conversion in the fully nonlinear dynamics
regime, was presented recently by Porat and Arie [25], later validated by Leshem et. al. [26] for the case

of adiabatic SHG in the nano-second regime.
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The adiabacity condition obtained in Ref. [25] is suitable for the CW regime or to a narrow-band pulses
and cannot be used when analyzing ultrashort pulses with bandwidth not negligible compared to their
central frequency. Yet, adiabatic evolution theory for ultra-short pulses is still absent, thus further
research as well as numerical simulations are required.

In my master work, we develop the equations dictating nonlinear frequency conversion of any
Three Waves Mixing (TWM) interactions in the ultrashort regime, suitable to wideband pulses where the
pulse spectral width (FWHM) is not negligible compared to the pulse central frequency. It is later
demonstrated, in section (3.2.1) that the obtained set of equations is a generalization of a recently
published Eq. set [27], suitable to narrowband pulses. In section (3.5) it is presented, that the equations
obtained fulfill the conservation of energy.

We develop the simulation procedure for the obtained set of equations in two manners: time

domain manner (section 3.2), and spectral domain manner (section 3.1). Comparison between the

obtained simulations performance demonstrated the supremacy of the time domain method in
simulating the ultrafast nonlinear frequency generation process of broadband TWM interactions
(section 3.4).

A robust general scheme for the design of adiabatic varying phase mismatch crystals was
develop for any TWM interactions, with the simulation presented herein used in an iterative manner
(section 4.1). When manufacturing limitations impose a limit on the maximal phase to be provided by
the crystal, we modify the obtained design using high order quasi phase matching (QPM) method. The

modification used in the case of high order QPM designs is presented in section (4.2), and simulation

results demonstrate the supremacy of the adiabatic crystals over periodically poled crystals in terms of
sensitivity to the QPM order.

It was exhibited in the research presented in section (5) that two photon absorption (TPA), an
aspect that has been lacking in all previous research on adiabatic frequency conversion, plays a
significant rule in the nonlinear dynamics, also highlighting the ease in which parasitic effects can be
incorporated into the simulation.

The ultrafast frequency generation simulation therefore fully enable us to extend the continually
expanding vast research on adiabatic frequency conversions: we used the simulation developed herein
to design a novel SHG crystal, and experimentally investigated its performance under variation of the
incoming pulse energy, pulse spectral and temporal width, and under temperature variation. High
conversion efficiencies and great robustness of the adiabatic SHG design were both numerically

predicted and experimentally validated in section (5). The broadband operation of the adiabatic SHG
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crystal presented in section (5) enables to efficiently double broadband pulses, thus allowing us to shape
and control the generated SHG pulse using phase manipulations done before the nonlinear crystal. By
assigning a spectral phase of absolute value and 7 - step to the incoming pump pulse, we achieved a
wavelength tunable intense pump-probe and amplitude modulation of the broadband SHG output. The
experiment details and the comparison between the experimental results to the numerical evaluations
is presented in section (6). Furthermore, we used the simulation to design an efficient robust optical
scheme for DFG pulse compression (section 7).

Finally, we present the concept of adiabatic Four Wave Mixing (FWM) frequency conversion. As
adiabatic TWM was found to be advantageous over traditional frequency conversions, it is expected that
FWM frequency conversion may also benefit from the adiabatic evolution. First, we present a general
propagation equation for four-wave mixing derived from Maxwell’s equations, capturing the full
frequency and time domain nonlinear pulse propagation effects for wave-guided interactions (section
8.1). Last, we present that the obtained equations can be simplified in several conditions to reveal the
SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage in two-level atomic
systems (section 8.2).

Such achievement can be useful in the design of extremely stable frequency conversion optical
elements, aimed to perform at harsh environmental conditions as adverse temperatures, shocks, tensile
stress and external pressure, as well in fundamental research in imaging microscopy and plasmonic
nanostructures. Thus, appealing for a wide range of applications in medical procedures, avionics,

satellites, and field-deployable communications systems.
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2. Theoretical background - Frequency conversions

When electromagnetic waves propagate through matter, the matter polarizes, as electromagnetic force

exerted on the matter charged particles generates a dipole moment.

‘ electron rich
£ ron r 2
4 electron poo region

/:7[: region d l

.
5+ &
< E,P=0od

Figure 1. Schematic presentation of the generated dipole moment. The electric field acts on the molecule electrons cloud,

creating an electron density gradient resulting is an electric dipole. d is the separation between the poor and rich electron

regimes, and 0 isthe regime charge.

The oscillating electromagnetic field generates an oscillating polarization radiating itself. The total
generated electromagnetic field is governed by Maxwell equations [28]:

- oH
21)VXE = —p—
(2.1) r

(2.2)VxH :50E+@
ot ot

A simple model for the generated polarization is the Lorentz model, where the interaction between the
electron poor and rich regimes is assumed to be harmonic:

23U, (d) = kd’

where d is the displacement between the poor and rich electron regimes, and k comes from the

Coulombic interaction between the two. In that case, the force exerted on the molecule F =0E, is

proportional to the displacement d via Hooke-law F =kd. As the generated polarization P = 5d s

proportional to d , the generated polarization is linear to the electric field, hence denoted Plinear -

(24) IE).Linear = gO)(lE
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where ¢, is the vacuum permittivity [F/m] and y; is the electric field first order susceptibility. As the

obtained polarization will oscillate in the same frequency as the incident field, insertion of P,

Linear Into

equations (2.1)-(2.2) results in total electromagnetic field with the same frequencies as the incident

field.

/

actual
potential

~

Uim (d) \

parabola

parabola

Y

Figure 2. Nonlinear polarization terms roots in the an-harmonic behavior of the interaction hamiltonian.

Deviation between the actual interaction potential to a harmonic potential will result in polarization

—

terms, denoted P,\,On,ineaIr that are not proportional to the incident electric field. The polarization, as a

general function of the electric field, can be therefore expressed in terms of its powers:

(25)P =g, E+eyp, B + &, ysE° +-+

F>Linear

PNon linear

j-1
m
where y; is the j-order electrical susceptibility {v} . New frequencies are generated by the

nonlinear polarization terms, as multiplication of periodic functions changes their periodicity. Up to

third order nonlinear electrical susceptibility, the insertion of frequencies @, ®@,, as an example, may

results (depends on the material electrical susceptibilities characteristics) in the generation of the

following frequencies terms, differ in the polarization term responsible to them.

Polarization term

Generated frequencies

Linear term - first order susceptibility y,

w,, 0,

Second order susceptibility ¥,

2a>1,2a)2,a)1+a)2,|a)1—a)2|

Third order susceptibility

3w,3w,,20, + w,, @, +2602,|2a)1 —a)2|,|2a)2 —a)1|

The generation of third frequency @, =@, +, through second order electrical susceptibility y,

between @, and @,, results in the following set of coupled equations [28]:

10
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(26) dAidiz) =i ZZa)lz A3(Z) A*Z(Z) efiAk.Z

dA,(2) _j 1,0,

2
k.

dz k,c?
dA,(z) _ij 1,05
dz k,c’®

(DA, @™

(DA, (2)e™

1 (it
where the electric field is given by E(z,t) ZEZ;Aj(Z)e'( ) e, k; is the electric field wave

number, given by

]

k.:

Q.
—n(w;) and Ak=(k,—k,—k )is the phase mismatch between the
c

interacting waves. The generation of third frequency through TWM can be done in three schemes:

a
@

Difference
Frequency
Generation (DFG)

l@ lﬁ

a)l_

@,

a
e

Sum Frequency
Generation
(SFG)

4, 4y

Second Harmonic
Generation (SHG)

2
4

Figure 3. TWM schemes: DFG, SFG and SHG configurations

2.1 SHG Scheme

The equations dictating SHG are [28]:

@r) B 22 5 )a @)e
dAZw(Z) =i Zza) A 2(2) e—iAk-z

dz

20

In the undepleted pump approximation, we assume that the pump intensity merely changes due to the
interaction between its second harmonic. In that case, the process conversion efficiency can be easily

deduced:

2 2
(28) IZw(Z) = 2)(2—6027720 |w222 SinCZ (A—kZ]
n (o 2

20" o

11
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SHG intensity - 1(2) Conversion efficiency
(a) | (c) Ak =0

|

i

[

|

$ 27

| Ak =<2

L+ L

i Ak N g

Propagation distance Phase mismatch Ak

Figure 4. SHG dependence with the optical axis and the phase mismatch. (a) Second Harmonic dependence with the optical
axis. Conversion and back-conversion of the second harmonic is observed. (b) Experimental demonstration of inset a.

(c) Conversion efficiency dependence with phase mismatch. Two sided main lobe width is given by Ak =27/ Lc , where

LC is the crystal length.

It is presented that the second harmonic intensity constructively interferes up to a coherence length
T
denoted |, :H’ afterwards destructively interferes up to 2|C and vice-versa. The phase mismatch

Ak therefore imposes a limit on the generated second harmonic, as longer crystals do not exhibit
better conversion efficiencies. In Fig. 4 inset (c) it is presented that the conversion process impose a
tradeoff between the conversion efficiency and the phase mismatch of the interacting waves. For
example, a 2mm standard BBO type | crystal designed to double 800nm, has a main lobe 2 sided width
equivalent to deviation of 3nm from each side of its operational wavelength: 797nm-803nm. For further
impression, we present the conversion efficiency dependence with wavelength and temperature of
1mm periodically poled SLT crystal, designated to double 800nm:

Conversion efficiency 1n[%] Ip=1[GWIcm2] Conversion efficiency n[%] Ip=1[Gchm2]

T T T T T T

T

e 40

..........................................................

S e — 20

?96 798 800 802 804 0 20 40 60 80 100 120
}.p [nm]

i

Crystal Temperature[°C]

Figure 5. Periodically poled SLT conversion efficiency sensitivity. (a) Conversion efficiency dependence with wavelength.
(b) Conversion efficiency dependence with temperature.

The operational wavelength FWHM is AA =0.1nm and the operational temperature FWHM is

AT =2[°C]. It is possible to work around the second lobe of the presented design (centered around

800.3nm) with increased robustness in wavelength and temperature, but at the expense of lower
conversion efficiency. It is seen that conversion efficiency for such simple designs is not robust to large

12
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deviation in wavelength nor in temperature, and the tradeoff between high conversion efficiency and
robustness is observed.

2.2 DFG/SFG Schemes

We investigate the generation of third frequency @, through DFG between @, and @, in the un-
depleted pump approximation, where the intensity of @, merely changes due to the interaction
between the waves, i.e |(®,) > |(®,), | (®;) . The undepleted amplitude A, is termed pump, and the

amplitudes A, A, are termed signal and idler respectively. The following set of equations is obtained:

(2.9) % = i% A*ZAS(Z) itk

1

A @) _: 2,05
i e AA(z)e

The solution for the above set of equations for constant nonlinear electrical second order susceptibility,
where the initial conditions are 1,(z=0)=1,(0)and 1,(z =0) =0is given by:

Z |+ Ak? K2 sin
.
, |3(Z): |1(O)_3
a)l

K2 cos?

NISEING
2

(2-10) |1(Z) = Il(O) 2+ AK?

27(2\/k17k

where k= 2 A, [m™] is the coupling coefficient and N is the material refractive index. We see
nln3

that in the presence of constant phase mismatch AK between the interacting waves, conversion and
back conversion of the generated idler occurs.

Normalized idler intensity - simulation

Normalized phase mismatch A]\' /K

Propagation distance [mm]

Figure 6. Normalized idler intensity as function of the propagation distance for various phase mismatches. It is demonstrated
that conversion efficiency is decreased in a sinc-wise manner, having its maximal value for Ak =0.

13
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The same tradeoff between conversion efficiency and phase mismatch discussed in section (2.1) for the

SHG scheme also exist here, as conversion efficiency descends with ascending|Ak

, hence sensitive to
small variations in the idler/signal wavelengths, as well as variations in environmental conditions as
temperature. Using Eq. set (2.9), one can deduce that in the undepleted pump regime, the photon flux
of both the idler and the signal waves remain constant:

dN,

(2.12) aN, AN
dz dz

L@, g - @

where N, =
, hao,

. The above equation, also known as the photon number conversion

rule, or Manley-Rowe relations [28] implies that the annihilation of photon (resp. creation) at @, is

automatically associated with the creation (resp. annihilation) of one photon at@,. It is therefore

informative to define the frequency generation conversion efficiency to be the ratio between the
photon flux of the generated idler and the incoming signal photon flux:

(2.12) n(2) = ,z'((zz))

which implies that the conversion efficiency in the undepleted pump regime is given by:

o Vi? + AK? ,

2

=(3)

sin
(2.13) n(z) =

14
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2.3 Phase Matching

In the absence of phase mismatch mechanism, significant generation of high-order harmonics is lacking,
as waves generated at locations distanced by |c destructively interfere. Phase matching techniques are

therefore critical when high conversion efficiency is desired, all designated to maintain the energy flow
direction towards the high order harmonics. Several methods exist in order to effectively diminish the
phase mismatch between the interacting waves, such as type | and type Il phase compensation in
birefringent crystals and QPM techniques. Using birefringent crystals, the phase mismatch can be zeroed
if the waves polarization relative to the crystal primary axes are carefully chosen. In the case of phase
matching type |, the phase mismatch for SHG process

z{optic) axis 5

Ak:2k(a))—k(2a))zsz(n(a))—n(Za))),can be L

diminished using different polarizations for the pump and its | (0,0,n0) Y
second harmonic. As the k-vector projection on the extra-
ordinary defines the extraordinary index of refraction

according to the index ellipsoid
n,?(8)=cos*(@)n, 2 +sin*(#)n,” , O can be chosen

e

such that n,**(6)=n," for negative uniaxial crystal, and |-~~-"="

n,” (6)=n,’*for a positive uniaxial crystal. In the case of

phase matching type Il, the pump electric field contains both v /
the ordinary and extraordinary polarizations, changing the ‘\ : /

required cutting angle @ such that keza' (19) =k,” +k.,” (0) \\Q‘#j/

The problem with the presented methods is that the photon L L
Figure 7. The k-vector direction projection on

flux of the extraordinary polarization differs from its k-vector, the primary axis defines the propagation
therefore creating a spatial walk-off between the ordinary refractive indexes.
and the extraordinary beams, hence limiting the maximal
possible conversion efficiency.

Another method is the QPM method, where in a process known as poling [28], strong electric
field applied on ferroelectric crystal allows the modification of the nonlinear electrical susceptibility sign

ty,, therefore enables us to design the second order susceptibility dependence with the optical axis:
¥.(2) = g,sign (COS( K, (Z)Z)) . K, (2) , the grating momenta, is the z dependent spatial frequency in
which ¥,(2) fluctuates between +y, to —%, . It is possible to maintain the direction of the energy flow
if the sign of ¥, flips with each domain width equal to |C, in other words when the crystal is periodically

poled with Kg = AK. In that manner, waves generated at locations distanced by |c are added an extra

7 - phase and interfere instructively. To understand how this modulation facilitates phase-matching

15
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. 2rz
let’s consider periodic modulation with periodAZ;(Z(Z):;(ZSIgn(COS(%D. Expanding %,(2)

using Fourier series results in the following:

(2.14) x,(2) =4, i [%sin(%nexp(i&%zj

m=—0

Ignoring the cumulative effect of higher orders than m =1, and substituting Eq. (2.14) into Eq. set (2.9)

yields:
(2.15) dpéiz) —i Zﬁli’f A2)A",(2) exp(—i[Ak_ZT”]. ZJ
dAéz(z) _i 2;1(2:‘0’;2 A3(z)A*1(z)exp[—i (Ak _ZTHJ . zj
dAdS;Z) _i isz:c‘)gz Al(z)Az(z)exp(H (Ak _2%) zj

As seen, the phase mismatch parameter is added the nonlinear susceptibility spatial frequencies. By

, it is possible to compensate the phase mismatch between the interacting

choosing K, = 27” = |Ak

waves. Designing the susceptibility modulation period A to zero the phase mismatch term in equations
(2.15) using the first Fourier coefficient (m =1) is termed QPM.

—>|:>}—V|

(a) Ks (b) Ks

K1 ko

AK
Wy é/\—» (0%
| —p
- ' sele=s
L—
L seeec =M
(1)3

fest
_JU_ Coherence
Ak Length

>

o
.
o

Quasi phased

g % matched crysta
= =
= =
S £
<< <
G) Bulk crystal o
w w
wv wv
Interaction Length Interaction Length o

Figure 8. SFG scheme (a) Phase mismatched SFG. The generated sum frequency is converted and back-converted, as waves
generated at locations distanced by coherence length destructively interfere. (b). Quasi phase matched SFG. The generated sum
frequency instructively interfere all over the optical axis. Graph is taken with permission from Ref. [13].
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Zeroing the phase mismatch using Fourier term of order m is called QPM of order m, namely

2r
m(x] = |Ak|. In other words, In the case of periodic poling, the grating momenta required for QPM

of order NQF,M , can be expressed using the first order QPM grating momenta:

Nopwm 1
(2.16) Ko = ———

QPM
which modifies in the case of arbitrary phase mismatch designs in section (4.2):

K, (2)
N

N =1
QPM
K g

(217K, (2) =

QPM

where Kg (Z)LcNQPM is the QPM grating design of order N, designated to a crystal length L.

2.4 Adiabatic Frequency Conversions

Following the notation Al \/_ A, A3 \/> A,, Eq. set (2.7) becomes:
oA 0, A,

(2.18) dAl ’; Age
dA3 H K* +iAkz
e
dz 2 Al

27Kk

nn,

where xis given by x = A, . As noticed by Suchowski et al. [14], the above system possess a
SU(2) symmetry with complete analogy to other two states systems, such as nuclear magnetic
resonance (NMR), polarization optics and the interaction of coherent light with a two-level atom, given
as an example:

e

da ,
(2.19) —2 =i £ 4 gattn)
dt 2

- 9

dae . 'Q—Oa e+iA(t—t0)
dt 2

Figure 9. The interaction between two level atom and coherent light. A photon centered around a)p interacts with an atom

AE HE,
having energy gap 7 = (a)p + A) . The interaction strength is determined by Rabi frequency Qo = 7 , where [I is the

dipole moment and 6‘p is the pump electric field.
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The electric field amplitudes /&1,,&3 are analogous to the ground and excited amplitudes a, and a,
dictating the wave function|1//>:ae|e>+ag|g>. The interaction strength x is analogous to Rabi-

frequency €, and the phase mismatch AK is proportional to the detuning A.

It is therefore feasible to adopt the vast research that has been conducted in the field of coherent
guantum control to the field of frequency conversions, allowing us to find new ways to efficiently
convert broadband sources. We define the adiabatic basis, which is the basis of the system’s
eigenvectors:

em(@)] 1 (el
=) o)

~ 11— ~ —1—1
whereC, =Ae 2 ,C,=Age ? are the unperturbed system eigenvectors. The dynamics of the

3

adiabatic states can be derived:

g3 L2
dz\B;) 2{ -0 ie(z) )\ B,
Ak(z)

where &(2) =vAK®> +x° and the mixing angle 6 obey sin(e):%,cos(e):w and
£ £

K(Z
tan (6’) = (2) . In adiabatic process, the system stays in one of its eigenvectors throughout the entire

Ak(2)

interaction. The condition for adiabatic frequency condition is therefore given by |i8(2)| < 6. In the

case of constant x, the adiabatic criterion is manifested in the following form:

dak| (A’ +x2)"
dz |

(2.22)
K

The condition puts a limit on how fast the phase mismatch parameter can vary along the optical axis in
order to get good conversion. It is also clear that the conversion process is more adiabatic when the
pump power is increased ( increasing x ). To understand how the variation of the phase mismatch

Ak(z, Ak(z
parameter AK(2) facilitates frequency conversion, let’s assume that M <0 and M > 0,

K(Zin) K(Zout)
where 7, ,Z,,are the crystal input and output facets locations respectively. In that case, the mixing

angle @ varies between 7 to 0 as the adiabatic states in Eq. (2.20) tends to different unperturbed
states:
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CS (92+Blz COS(gjcl_i_sin(ejC out C

-C, <92i—”7r B, = —sin(gjcl - cos(gJQ %Q‘

If the system starts in one of its eigenvectors, and the adiabatic criteria in Eq. (2.22) is fulfilled, the
system stays in the same eigenvector. As the adiabatic states tends to different unperturbed states via

the z-dependent mixing angle &, the population gradually passes from C1 to C3 (or vice versa), and
complete population transfer is feasible.

Adiabatic evolution - Complete populatlon transfer
§ [— e

0.5

Optical Axis
Ak=() Ak=0 Ak=0)

Figure 10. Adiabatic evolution. By adiabatically changing the phase mismatch parameter along the crystal optical axis,
complete population transfer is feasible. In other words, complete conversion between the signal and idler photon flux,
defined in Eq. (2.11).

A grating possessing a varying phase mismatch 2 1 e e

AK(z) is inherently broadband, as diverse TWM & " \.khln
interactions differ in their phase mismatch can be §

efficiently generated at different locations on the ! o g € E| E

optical axis. The broadband operation of such an ,5 04 % § § §

adiabatic design was experimentally %

demonstrated in Ref. [23], where 680-870nm NIR = =

pulse were efficiently down converted into an 8 e e W - “-“ -

octave spanning 2—5um MIR pulse using a
1047nm pump.

Figure 11. Main figure: Conversion efficiency map as a
function of the generated wavelength (y-axis) and the
location along the optical axis (x-axis). The pump intensity is
8.1GW/cm?. The upper panel shows the conversion
efficiency for several wavelengths along the propagation
axis. As seen, all are designed to have adiabatic trajectories
for efficient conversion from near IR to mid IR. At the output
facet of the nonlinear crystal (L = 2 cm), high conversion
efficiency is achieved for the 1300-5500 nm spectral range.
Graph is taken with permission from Ref. [23].
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2.5 SU(2) geometrical representation - Bloch sphere

The geometrical representation used to visualize the dynamics of spin % system by F. Bloch [29], R.
Feynman for atomic systems [30] and Poincare in polarization optics can be adopted to the field of
frequency conversions. In Bloch sphere presentation, the dynamics of SFG (or alternatively DFG)

dictated by Eq. set (2.18) is visualized by a unit vector ,BSFG capsulated by the sphere. The state vector
Ugs C,C +C, G,
Psec =| Vsee |/ 8iven by Py = i(C;Cl —Cl*C3) obeys the precession equation:
W 2 2
°re |C3| _|C1|

dp .
(2.23) % =0 X Pse

Figure 12. The precession equation. Visualization of the state vector ﬁSFG precession around the torque vector (.

The torque vector, given by § =(Re(x),Im(x),AK) determines the evolution of the nonlinear
interaction. While the south pole of the sphere pg; =(0,0,—1) corresponds to C, =0, i.e zero

conversion, the north pole ﬁSFG =(0,0,l) corresponds to full conversion. An efficient conversion

process will be therefore visualized by a gradually rising state vector, as conversion efficiency depends
1+W

2
In the undepleted pump approximation where x is constant, the SFG (or DFG) dynamics in the case of

2
on the state trajectory on the W axis 1 = |C3| =

constant phase mismatch AK are given by the precession equation with constant torque vector §. The

2 2
state vector trajectory is therefore a periodic circle with period Az =—

|g| Ak? + i?
stated in Eq. (2.10). In the case of zero phase mismatch Ak, the torque vector lies in the UV plane, and
the state vector trajectory passes through both the south and north poles. In other words, full
conversion and back conversion of the generated idler occurs. When the phase mismatch is not zero,
and the system starts without SFG/DFG present (that is to say in the south pole), the state vector
trajectory can never pass through the north pole, and full conversion is therefore impossible.

, as already

Visualization of the described trajectories is exhibited in Fig. 12.
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0s

0 0s | ) 2

Propagation Length [cm]

Figure 13. (a) Bloch Sphere visualization for the case of constant phase matching and constant coupling strength k. Blue

trajectory - Ak = 0.Red trajectory - Ak # 0. (b) State vector trajectory on the W axis. Conversion and back conversion of the

1+Wgrg

generated idler is presented for the described trajectories via n = , with accordance to Eq. (2.10). Graphs are taken

with permission from Ref. [14].

The state vector trajectory is completery different in the adiabatic regime. While the phase mismatch
parameter gradually changes between negative values to positive ones (as described in section 2.4), the
torque vector § climbs from the south pole towards the north pole. Since the state vector trajectoy
precess the torque vector §, the state vector itself gradually climbs towards the north pole, and high
conversion efficieny is achieved. The transition between low conversion efficienies towards high ones

occurs in the regime|Ak/K| <1, where the precession vector § lies in the UV plane and the state

vector moves from the south hemisphere to the north one.

(b) Ak<<0  Ak=0 Ak>>0

, ®,
™
(C)‘ -»ELJr -
E
025
6 " -mf\f"/

05 $ 0 ¥ 05
Propagation Length [cm]

Figure 14. Bloch sphere visualization for adiabatic frequency conversion. (a) State vector trajectory in the adiabatic
regime gradually climbs between the south pole (zero efficiency conversion) towards the north pole (full conversion
efficiency). (b) Phase mismatch dependence with the optical axis in the adiabatic regime. (c) Conversion efficiency
increases with propagation length. The transition between the southern hemisphere to the northern one effectively

occurs within Leff , centered around Ak = 0. Graphs are taken with permission from Ref. [14].
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3. Spectral and temporal numerical simulation of TWM

Simulating the nonlinear interaction between ultrafast pulses inside the grating crystal was done in two
presentations. In the first one, the common continuous wave (CW) amplitude equations describing
mono-chromatic sources were generalized to deal with wideband sources. In that method, the nonlinear
interactions are described in terms of the fields spectral amplitudes, while in the second method the
nonlinear interactions are described using the pulses time-envelopes. In what follows it is shown that
although mathematically equivalent, the time domain presentation surpasses the frequency domain

presentation in terms of calculation time and ease of calculation.

3.1 Frequency domain based simulation

3.1.1 Equations derivation in the frequency domain

We present the equations of an input pulse being inserted into a media with chirped second order
nonlinear susceptibility. Denoting the fields amplitudes with AJ- , where j denotes the frequency @; , the

electric field is written in the following manner:

BDE=Y A@e"" ™ F(x yaf

.
where K; is the electric field wave number, given by K; = L N(w;), z is the optical axis of the crystal,
C

Af = fj+l_ fj is the simulation resolution in the frequency domain, and F(X,Y) is the electric field

mode profile obeying Helmholtz equation:

(32)VAF(x,y)+ (C"Tln] k2 [F(x,y)=0.
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Detailed derivation of the equations dictating the frequency conversion process is presented in appendix
A.

To summarize, the equations obtained are the following:

dB, (z, f. Dol L, . o
(3.3) Isz ')=ilei zf’l e (B,(z, fm)e“kmz)*((BP(z, f)e ) )Af
j
2 .
dBp((jZZl fk) — | ZZlEZggok eika (BS (Z, fm)e—ika)O(Bl (Z, fj)e_lka)Af
k
dB ,f . 2 ik 7 —ik,z Sikiz\"
ngz m)ZIIZIEZ?m A (Bp(z, f)e™ )O((B, (z,f))e . ) )Af

m
with the following notations:

o A, (z, f;)-Amplitude of pulse  €[l,P,S]at frequency f;, where « €[l,P,S] denotes the

Idler (1), pump (P) and signal (S) pulses.
e Y - Normalization constant defined by the electromagnetic field mode profile:

|F(x, y)|2 F(x, y)dxdy
Y=
I|F(x, y)|2 dxdy

B, = YA, - Normalized pulses amplitudes.

Af - The spectral simulation resolution defined by Af = f, , —f,.

The symbol * between two arguments f * defines the discrete convolution operation:

(f*g)Inl=> f[klgln-K]

The symbol © between two arguments f O g defines the discrete correlation operation:

(fog)l=. flklg[n+k]
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3.1.3 Simulation procedure in the frequency domain

I. Pulses definition:

In section (10.3.2) it is shown that the pulse energy density is given by:

E
34)E, =<
el

J n(f
_2} - J.Q|B(z, f)|2 df
2
m Mo
where 77, is the waves impedance (377Q) and n(f) is the frequency dependent refraction index. We

start by defining the spectral pulses shape and normalizing it such that Eq. (3.4) is obeyed for each of the
pulses with the corresponding energy density:

2n, - Ed
ZWUDWUDFN
]

(35) B( f )Normalized =

The pulses time duration is then determined by the pulses spectral phase. As an option, a parabolic
spectral phase can be applied to broaden the pulse [28]:

(36)Bam,f)=exp(_iCh"p

(0) ~ Ocenter )Zj B(f )Normalized

Where @

-enter 15 the central pulse frequency and Z;, is the crystal entrance facet position.

II. Numerical integration
B, (z, f)
Defining the pulses amplitudes B = Bo(z, f) | and the nonlinear Eq. set (3.3) byG(é,Z, f), the
B, (z, f)

numerical integration is performed using 4’'th order Runge-Kutta method in the following manner:

GJ)@¥%£2=Gﬁiﬁn,§@J:§m

n=0,123..
k,=G(B,, f,z,)
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K, :G£I§n +Ek1,zn +Ej
2 2

B :E§n+2(kl+2k2+2k3+k4) , Z,,=12,+h

where h is the spatial resolution of the optical axis, n indexing the position on the optical axis grid, and

Z;, is the crystal entrance facet position.

IlI. Time domain-presentation

The time domain presentation of the simulation is obtained using inverse Fourier transform:
i +00 ( )t
gt —iB(w +ilw-o,
Eﬁ(x,y,z,t):F(x,y)(e ’ _[A[,(z,a))e ()2 de
where the subscript £ stands for the signal, pump and idler pulse. In other words:

(38) Bﬂ(Z,t) — I Bﬂ(Z,a)) e—iﬁ(w)ze+i((o—wls)tdf =S_1<Bﬂ(2,a)) e—iﬁ(a))z)
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3.2 Novel time domain based simulation

3.2.1 Equations derivation in the time domain

The equations describing the nonlinear frequency generation process are presented in the time domain.

We begin with decomposing the electric field into plane waves:

+00

(3.9 E(z,t) = J d—a)|A(z, )|cos(ot - B(@) 2+ <A(z,0)) =

o 2T
1% d i wt-20), . i wt-20@),
:—j—w A(z,a))e( ¢ j+A(z,a))e( ‘ j
24¢ 27
+ do 1l . +i(a}t—7wn(w)zj
= | —=(A(z,0)+ A (z,-w))e ¢
> S(Az.@)+ A (2-0))
. . - . on(o)
where A(z,w) is the spectral density of the electric field amplitude, and (@) = is the
c
frequency dependent electric field wavenumber.
Y E(z,0)
—iZn(@)z —fgn(a))z
A (z,-w)e © A(z,m)e ©
> )

Figure 15. Frequency domain field presentation

We assume, as presented above, that A(z, ) is centered around some central frequency and exist

only for positive values of @.

Defining the following amplitudes:
(8.10)C,(z,0~w,) = Aﬁ(Z,a)) - Aﬂ(zla))e—iﬂ(w)z

where the subscript S €[S, p,i] stands for the signal, pump and idler pulses respectively, and g is the

corresponding pulse central frequency.
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The pulses electric field can be easily represented in terms of Cﬁ :

BIE,@0=3 [ 12(e“Clz.0-a,) +e “C'(2.0-0,))
0 T
1 mda) |(a) ® 1 it
——ge"“ /’C Z,w—w,)+c.c=—e “C,(z,t)+c.C
> o 5( ) 5 »(2,1)

o

where Cﬁ(z,t) defined above is the Fourier transform of the electric field spectral density envelope

centered at g

+ooda)

(312)C,(z,1) = jZ—e‘<“‘“’f’)tcﬂ(z,w—mﬂ)=3(cﬂ(z,m—wﬁ))
T

0

Detailed derivation of the equations dictating the frequency conversion process is presented in appendix
B. To summarize, the equations obtained are the following:

e The TWM equations in the frequency domain:

(3.13) 3,A (2, 0) +if(0) A (2, ) = |—MA(z w)* A (z,0)

(@)
;c( ) & B
A,.0)+ip(@)A,2.0) = 2 LEA @A @ -0
0,A @) +ip(@A(2,0) =i n((w; AG.o)* A (2,-0)

e The TWM equations in the time domain:

(3.14) &Y it (w4 w)3C,(2.1)) =-ix(2)F %s(ci(z,t)cp(z,t))]
oz n(w+w,)c
oc,(zt) ., o . )
%+IS (B(o+®,)3C,(2,0) ) =-iz(2)3 r}(;”)i—‘a‘;)ca(cs(z,t)ci (z,t))]
oC.(z, t) o | o+o .
T I (Ble+@)3C(z,t)) =-ix(2)3 —n(erwi)C\s(Cs(z,t)Cp (z,t))j
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If C,(z,1),C,(z,1),C;(z,t) have bandwidth much smaller than their central frequency, it can be

assumed that o+ ®, ~ @, , hence:

(3.15) —i Z(Z)S1(%3(@(2,00;(2,0)} 7‘((2);”' 37(3(C, (21, (2.0)) =
¥ (),

n( e £ (C (2,0, (2.))

yielding the above set of equations:

(3.16) wgyl(ﬂ(m%)sq(z,t)) 28, t)C, (2.t)
z ”(CUS)C
acpaf(zz’t)nsl(ﬁ(wm )3C,(2.1) ) =- }rf((w)p)gc (Z,1)C, (z,1)
M+|S’1(,B(a)+a)i)SCi(z,t) ) =-i 2(2)e, C,(z.1)C, (z.,t)
oz n(a,)c

used in Ref. [27].
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3.2.2 Simulation procedure in the time domain
I.  Pulses definition

The pulses are defined in the same manner described in section (3.1.3), except that now the pulses
contain the same number of discrete points and are defined on the same grid (In contrary to Ni,Ns and
Np spectral points defined in section (10.1.2):

t t
e All pulses share the same time grid t e{—%, %}

e The time grid defines the frequencies vector of the pulse time envelope:

N N t
f. f :i ——L:1:] =+ -1, where dt =™ js the pulses resolution in the time
t | 2 "\ 2 N,

max

domain.
II. Numerical integration
The numerical integration is done using the split-step Fourier method. We divide the equation into two

parts. The linear part accounts for dispersion, and the nonlinear part is responsible to the second order

nonlinear optical generation through y(z).

(3.17)
sl[Ms(ci(z,t)Cp(z,t))]
. n(w+w,)
C.(z,1) 3 (Blo+w,)C,(2,0))
0 | ~-1 Z(Z) ~-1 a)+a)P ~ *
—| C,(z.t) |=-i| I (Blo+0,)C (z.0) ) -1 £ T (—\s(CS(Z,I)Ci (z,t))J
0z c No+o,)
C.(z,1) 3 (Blw+o)C (2, 0)) P
Linear Part Sl(MS(Cs(Z’t)Cp*(Z’t))J
n(o+,)

Nonlinear Part

The linear part of the equations is first calculated in the frequency domain:

(318) CaDisperesed (21 a)) — e—iLa(w)hCa (21 60)

where a €[s, p,i], L, (@) is given by (3.19) L, (w) = f(w+®,) and h is the spatial resolution on

the optical axis. If we wish to work in a time reference that moves together with the pump pulse, all
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amplitudes must be translated: (3.20) C,(z,t) > C,_(z,t-t,)=C, (Z,I—L), whereV, (@,) is
o\ @y

the pump pulse group velocity and tp is the time it takes the pump pulse to propagate distance h.In the

+i(w+wu)h

frequency domain Eq. (3.20) takes the form C_(z,w+a@,) —>e " C_(z,0+®,), generalizing the

(0+w,)

linear operator L, (@) defined above: (3.21) L, (w) = o+ ®,) ——=.
vy (@)

The nonlinear part of Eq. set (3.17) is then numerically integrated using 4’th order Runge-Kutta, where

the fields amplitudes are taken to be the dispersed ones defined in Eq. (3.18).
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3.3 Simulation Examples

We display some simulation results for general impression. We present the simulation outputs for DFG

process between lum Gaussian pump pulse to 0.75um Gaussian signal pulse. The simulated grating is

periodically poled Lithium Niobade crystal with periodicity of 20um. The simulated susceptibility is

therefore y(z) = Sign(COS(KgZ)), where the grating momenta Kg is given by K, =

All simulation parameters are summarized below:

2r
(A=20um)

Simulation parameter

Value

Pump Spectrum

Gaussian pulse

Pump wavelength [um] 1

Pump energy [mJ] 1

Pump temporal width (Transform limit) [ps] 100

Pump Mode Field Diameter (MFD) [um] MFD, = 0.5mm

(Mode Field Diameter - 4o of the intensity profile) MFDy =0.5mm
0.196

Pump Average Area [mm?] %MFDXMFDy

Signal Spectrum

Gaussian pulse

Signal wavelength [um] 0.75

Signal temporal width (Transform limit) [ps] 50

Signal Energy [ul] 14

Signal Mode Field Diameter (MFD) [um] MFD, = 0.5mm

(Mode Field Diameter - 40 of the intensity profile) MFD, =0.5mm
0.196

Signal Average Area [mm?] %MFDXMFDy

The fields amplitudes demonstrated below are computed in the lab frame. The linear operator defined

by Eqg. (3.18) merely accounts to dispersion as defined in Eq. (3.19).
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Normalized Pump Power - Simulation Normalized Signal Power - Simulation Normalized Idler Power - Simulation

time [ps]
time [ps]

5 10 15 0 5 10 15 20
Propogation distance [mm] Propogation distance [mm)] Propogation distance [mm]

The time dynamics of the frequency conversion process is exhibited. The known behavior of periodic
frequency conversion and back-conversion is typical to periodically poled crystals and was already
addressed for the CW case in section (2.2).

The pulse temporal characteristics effect on the frequency conversion process can be further examined.
For demonstration we present the time dependent conversion process when the pump pulse is 1ps

delayed from the signal pulse:

Normalized Pump Power - Simulation Normalized Idler Power - Simulation Normalized Signal Power - Simulation
1
-200
-150 0.8
-100
= _ - 0.6
k3 g &
o
E £ g
= = 0.4
0.2
200
0 5 10 15 20 Y 5 10 15 20 0 5 10 15 20 9
Propogation distance [mm] Fropogation cistance fmm] Propogation distance [mm]
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3.4 Time domain simulation vs frequency domain simulation - performance
comparison

We compare the time domain simulation and the frequency domain simulation in terms of calculation
time and absolute errors, defined as follows:

|ETotaI (Zout) B ETotaI (Zin )|
ETotaI (Zin)

Absolute Error [%] =100-

where E. ., is the total energy of the system defined in section (3.5) and Z are the crystal input

in? Zout

and output facets respectively. We compared the simulation results for a DFG process between 1030nm

pump pulse and a stretched Ti-Sappire oscillator pulse. Simulation parameters are provided below:

Simulation parameter

Value

Pump Spectrum

Gaussian pulse

Pump wavelength [nm] 1030
Pump energy [ul] 20
Pump FWHM AA [nm] 2

50

Pump chirp Chirpg,,, [107's?]

Pump Mode Field Diameter (MFD) [um]

(Mode Field Diameter - 40 of the intensity profile)

MFD, = MFD, = 0.5mm

Pump Average Area [mm?’] %MFDXMFDy

0.196

Signal Spectrum

Ti-Sappire oscillator measured spectral shape

Signal Energy [ul] 1

Signal chirp Chirpg,,, [107's%] 0.5

Signal Mode Field Diameter (MFD) [um] MFD, =0.5mm

(Mode Field Diameter - 4o of the intensity profile) MFD, =0.5mm
0.196

Signal Average Area [mm?] %MFDXMFDy
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Figure 16. Performance comparison between the time domain simulation and the
frequency domain simulation. (a) Running time comparison. (b) Absolute error comparison.

Although not presented herein, we calculated the Mean Square Error (MSE) of the difference between
the output pulses spectral shape for various values of optical axis discretization, and deduced that
steady simulation results, where the obtained MSE is smaller than 1%, are achieved for optical axis
discretization smaller that 0.54m (more than 2000 calculations per mm). It is displayed, that the time
domain simulation is both significantly faster (~X 10) and accurate (~X 3) than the frequency domain
one.
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3.5 Energy considerations in the presence of nonlinear polarization
In the following section, we present the energy flux equation in the presence on nonlinear polarization,

and demonstrate its validity for the pulsed TWM Eq. set (3.13) obtained above.

It is derived in appendix C section (10.3.1), that the following energy flux equation holds:

ou, 0S 1 -, OE
+—=——¢g,7E
ot oz 2 ot

(3.22)

with the following notations:

1, = =  —~ — -
e The electromagnetic field energy densityu, = E(gE -E+uH -H+P - E).

e The pointing vector S=Ex H, calculated using the electromagnetic fields without taking into

account their nonlinear polarization contribution.
Integrating the above Eq. (3.22) over both the spatial domain and the time domain Idxdydt results in

the following:

ou, o0S 1 -, OE
e 22— 4(2)E2 =
P
ou 8deXdydt 1 .. OE
dxdy —edt+—2—~  ——~ ¢ »(z)[ dxdyE*> =t
J Yo T 5 S0 )] oy ot
- — o |t=+00
e 05(z) 1 E3
3.23) | dxdyu + == Z) | dxdy —
(3.23) [ddyu,|  += === ar(@)] =

As all pulses diminishes at t =+, both U, and E diminishes at t = +o0 , Which leads:

5(2) _
oz

0

(3.24)

where S_(Z) is the total energy passing through plane perpendicular to the optical axis at place z

and the pointing vector S=ExH is calculated using the fields separated from their nonlinear

polarization contribution.
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To validate that the obtained pulsed TWM Eq. set (3.13) is correct, we verified that it obeys the energy
conservation indicated in Eq. (3.23). Detailed derivation of the energy conservation rule is presented in
appendix C section (10.3.2) and summarized herein:

J
e The energy density E, {—2} of pulse g €[S,P, 1], where [ stands for the signal, pump and
m
idler pulses respectively is given by:

t=+o00 t=+400 +00
(325)E, = [ sdt= | (EﬂxHﬂ)dt=£df;(—;’2|A(z,a,)|z

t=—w t=—w0
The pulse spectral density is therefore defined as
n
(3.26) S () = ﬂ|A(z, o)’
2uc

e The total energy of all three pulses is conserved:

(3.27)

dE d +0 2 2 ?
P
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3.7 Sum frequency simulation

The equations describing the generation of an idler pulse centered around @, as the result of a DFG
process between the signal and pump pulses centered around @, and , respectively, were presented

in the previous sections, where the idler central frequency was defined such that @, = @, —,. The

equations describing the generation of a SFG process between the signal and pump pulses can be easily
deduced by observing the DFG process as an SFG process between the idler and the pump pulses:

@ + o, = o,

The equations describing SFG are therefore the same as those for the DFG process with the following
subscript exchange:

I—S

S—i

The equations describing SFG are easily obtained:

(3.28) 0,A (2, 0) +i (@) A(z, ) =—i9@&(z,a))*/lp(z,w)
¢ n(w)

8,A (2,0)+iB(@)A,(z,0) =i Qﬁﬁ,(z,w)*l\;(z,—w)
¢ n(w)

0,A(2,0)+if(@)A (2,0) =i 22D & (2,00 A (2,-0)
¢ n(w)
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4. Phase matching technique - design procedure

In section (2.3) we briefly presented the QPM technique used to compensate the inherent phase
mismatch between the interacting waves. While the method displayed accounts to periodic poling
where the grating momenta is constant, i.e Kg (z)=Ak, in the following we present our
phenomenological method for obtaining adiabatically varying phase mismatch designs. First, we
present our method used to obtain first order QPM designs. later on, the developed method is used to
account to higher order QPM crystals.

4.1 First order QPM design procedure

In order to obtain adiabatic evolution from one frequency to another, the phase mismatch of the
interaction shall be swept from a large negative (positive) value to a large positive (negative) one. If the
phase mismatch is swept adiabatically compared to the interaction strength «, dictated by the adiabatic

criteria (Eq. (2.22)), efficient conversion occurs. As presented in section (2.4), the adiabatic sweep allows
efficient conversion for a range of frequencies, because diverse wavelengths can be generated in
different locations along the optical axis, where the phase mismatch of the interaction is approximately

zero |Ak| | k < 1. It is therefore clear that in order to convert a broadband source, the grating momenta

shall range between all values of phase-mismatch parameter AK(®) within the desired range of

converted frequencies. The adiabatic design procedure of the grating function starts with a crude

2
approximation, where the grating period A(z) = ( is increased linearly with the optical axis:
g
. 2 2
(4.2).A;,, =min 4 VA = Max z
Ak() Ak()

(4'2)'A(Z):Amin +M(Z_Zin)

C

where L, isthe crystal length and Z,, is the crystal input facet.
The obtained grating function K (z) =27/ A(z) is than expanded in polynomial manner in terms of
=(z—-z,)/L,:

normalized optical coordinates Z

k
(4.3). Kginitial (2) = za‘kznormk -Ya, LZ —Z J
k=0

where n is the expansion order, and {ak} are the expansion coefficients. The obtained performance of

the achieved design is than examined using the numerical simulation, and the conversion efficiency of
the adiabatic process is calculated all over the desired range of generated frequencies. The initial grating
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function design is then improved in an iterative manner using three parameters «, f and y, that enable

us to modify the simulated wavelength dependent conversion efficiency:

Sk
iterative C atz— Zin
(4.4).K,"“™ (Z):zak[Tj +y
k=0 C

A scheme of the design process is presented:

Crude approximation of Kg is applied. Kg(z) is

polynomial expanded in terms of Z,,or-m

Initial tuning parameters are
chosen: a, f and y

The pulses are numerically

simulated

Is frequency
conversion efficient

throughout the
entire spectra?

The crystal grating is obtained

Figure 17. Design Method Scheme.
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As described, optimizing over «,f and ¥ results in an optimal design for specific crystal length and

pulses spectra. Each of the parameters has a different effect on the conversion efficiency curve:

e The parameter « determines the bandwidth of the conversion efficiency curve. Typical «
values are in the range « €[0.5,1].

e The parameter [ determines the slope of the conversion efficiency curve. Typical £ values are
in the range f €[0.5,1.5].
e The parameter yis used to apply fine tuning on the obtained design. y deflects the entire

conversion efficiency curve. Typical y values are O (104 Cm‘l) .

71 Slope o«

BW ca . AAd ey
> le——>

N

L
rd

2o i f

min max

Figure 18. Conversion efficiency dependence with the grating parameters o, $ and y.

We continue with providing illustrative explanation to the conversion efficiency dependence with each
of the parameters defined above. For clarity, the influence of each parameter on the grating momenta

function Kg (2) will be examined when all other parameters effects are diminished, i.e & =1, f =1 and

y =0.

a) a parameter effect:

The functional dependence between K (z) and « isgivenby (S =1y =0):

al—1
=K )

The modification to K (z) can be stated as K, (z,) = K (@z). The stretching imposed by «

therefore modifies the possible momenta provided by the grating, hence altering the bandwidth
of the conversion efficiency curve. The dependency of the rapid adiabatic passage (RAP) curve
with the optical axis is therefore strongly affected by the parameter «, and the RAP curve slope

variability is displayed in the following graphs for both &« =0.5and a =1.
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Normalized Idler Intensity - Simulation Normalized Idler Intensity - Simulation
04

04

=
N
o
s
[
w

=
B
o
=
B

Y
&
=
=
>
N

Idler wavelength [um]
Idler wavelength [um]

=

=

o
P
=3

0 5 5 0
Propogation distance [mm] Propogation distance [mm]

Figure 19. The parameter a changes the bandwidth of the conversion efficiency curve as it modifies

the RAP position slope curve. The added possible momenta provided with enlarging a is manifested
through the conversion efficiency curve.

b) B parameter effect:

The functional dependence between K (z) and f is given by (o =1,y =0):

— B
Kg (Z) - Kg (Z norm)
To understand why £ modifies the conversion efficiency slope, the grating momenta is

depicted for various values of /. We recall the first crude approximation to K (z):

27 27 1

K = =
g(Z) A +(A _Amin)z (Amax_Amin) —Ami”

min

max norm

which up to a constant can be described as:

K, (2) A
(Amax - Amin ) * from

For a DFG process between Ti-Sappire oscillator signal pulse and 1030nm pump pulse in a

Magcln, the crystal grating periods A, and A, are given by 14um and 20um respectively. For
the corresponding SFG process A, and A, are given by 2.7um and 4.5um respectively.
A, /(Amax —Amin)is therefore quite close to 1, and the dependency between K| (Zﬁnorm)
1
z P

norm

and [ can be exhibited using K (z, B)
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0 z 1

norm

=)
Figure 20. The parameter f effect on the grating momenta K (z, ) oc (1+ Znormﬁ)

dK, (z, B)
It can be seen that by changing [, one alters the slope of the grating momenta gd—in two
Z

opposite directions compared to the case with =1 close to the crystal input facet, where the short

dK, (z, B)
wavelengths are generated, the slope absolute value gd— increases with £ <1 and decreases
z

with £ >1, while near the crystal output facet, where the long wavelengths are generated, the opposite

dK (z,
dependecny with f is observed: the slope absolute value # decreases with £ <1 and
z

increases with S >1. Because the adiabatic criteia in Eq. (2.22) strongly depends on the grating

momenta slope, one can use [ in order to alter the conversion efficieny of frequecies generated near

the crystal input and output facets in opposite manner.

Conversion efficiency Conversion efficiency
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05
025/ : :
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Figure 21. Enlarging B increases the conversion efficiencies of the wavelengths generated near the crystal
input facet, while decreases the conversion efficiencies of wavelengths generated near the crystal output
facet. Flat conversion efficiency curve is obtained.
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c) Yy parameter effect:

The functional dependence between K (z2) and y isgiven by (o =1, S =1):

K (2.7) =K, (2)+y

The parameter y is used to deflect the entire conversion efficiency curve, thus enabling us to

carefully tune the maximal and minimal generated frequencies.

Kg(z)

norm

Figure 22. The parameter y effect on the grating momenta.

Shifting the entire grating momenta changes the maximal and minimal momenta provided by
the fluctuating second order nonlinear susceptibility, hence deflecting the entire conversion
efficiency conversion curve.
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Figure 23. Conversion efficiency dependence with y. The shifting of the entire conversion spectrum is observed.
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4.2 High order QPM design procedure

As stated before, the second order nonlinear susceptibility x(Z) fluctuates between +y to —y

according to the grating momenta K (2): x(z)= Zsign(Kg (Z)Z). When the batches in which the

second order susceptibility is constant are too small, manufacturing limitations arise. In that case, high

order QPM shall be taken into account. Applying high order QPM of order NQF,M in small intervals

2

around specific location z, is achieved merely by multiplying the grating period A(z) = at the

g
same location with the factor NQPM, hence duplicating every batch in which y(Z)is constant with
2 27

T

Neooy - A(2) = - N

QPM QPM
Ke(@)  Ky(2)

.In other words:

45)K,(2) - K@

QPM
We present simulation results for the conversion efficiency of SFG process between 20nm bandwidth
pump pulse centered around 1030nm and its second harmonic for various QPM orders:

Conversion efficiency 7[%] IS=0.5[GWIcm2]

100 .

80

60

20

0 - 1
510 515 520
[nm]

)\SHG
Figure 24. Conversion efficiency dependence with QPM order for a SFG process between
undepleted signal and its second harmonic.

It is exhibited that in contrary to the periodically poled case, where the conversion efficiency
dependence with the QPM order is given by 7 cc NfZQF,,\,I [28], the dependence in the case of

adiabatically varying designs is much weaker. The supremacy of adiabatic designs over periodically poled
crystals is presented in terms of sensitivity to the QPM order.
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5. Article - Ultrafast adiabatic second harmonic generation
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Abstract

®

CrossMark

We introduce a generalization of the adiabatic frequency conversion method for an efficient
conversion of ultrashort pulses in the full nonlinear regime. Our analysis takes into account
dispersion as well as two-photon processes and Kerr effect, allowing complete analysis of any
three waves with arbitrary phase mismatched design and any nonlinear optical process. We use
this analysis to design an efficient and robust second harmonic generation, the most widely
used nonlinear process for both fundamental and applied research. We experimentally show
that such design not only allows for very efficient conversion of various of ultrashort pulses,
but is also very robust to variations in the parameters of both the nonlinear crystal and the
incoming light. These include variation of more than 100 °C in the crystal temperature, a wide
bandwidth of up to 75 nm and a chirp variation of 300 fs to 3.5 ps of the incoming pulse. Also,
we show the dependency of the adiabatic second harmonic generation design on the pump
intensity and the crystal length. Our study shows that two photon absorption plays a critical
role in such high influence nonlinear dynamics, and that it must be considered in order to

achieve agreement with experimental results.

Keywords: nonlinear optics, ultrafast phenomena, adiabatic processes, frequency conversion

(Some figures may appear in colour only in the online journal)

1. Introduction

Second harmonic generation (SHG) is the most basic non-
linear optical process, yet the most powerful and widely used.
Since the first demonstration of the SHG process right after
introducing the first laser [1], it revolutionized the field of
light-matter interactions, allowing a new way for exploring
atomic, molecular and condensed matter systems. Due to
its simplicity, requiring solely shining a single laser beam
into a nonlinear crystal, it gained popularity among diverse

“This article belongs to the special issue: Emerging Leaders, which features
invited work from the best early-career researchers working within the scope
of Journal of Physics: Condensed Matter. This project is part of the Journal
of Physics series’ 50th anniversary celebrations in 2017. Haim Suchowski
was selected by the Editorial Board of Journal of Physics: Condensed
Matter as an Emerging Leader.

1361-648X/17/084004+9$33.00

applications from nonlinear spectroscopy, metallurgy, pho-
toinduced dynamics in 2D and condensed matter dynamics,
noninvasive background free diagnostics, and the generation
of new color sources [2-5]. It is, however, generally difficult
to obtain efficient and robust conversion from a pump pulse to
its harmonics for a broad range of colors. This is mainly due
to the lack of phase mismatch (lack of momentum conserva-
tion) between the interacting waves, which conventionally can
be compensated only for a narrow band of frequencies. In the
fully nonlinear regime, where none of the interacting waves
can be considered to be undepleted, efficient broadband con-
version is even more difficult due to its complex dynamics.
Although, in the past, several methods were suggested to
deal with the conversion of a broadband source, such as short
birefringent crystals [6], multi-periodic modulation [7], chirp
patterns [8, 9], temperature gradient manipulations [10, 11]

© 2017 IOP Publishing Ltd  Printed in the UK
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and random oriented crystal [12]. Those indeed achieved
very broadband conversion, but at the expense of limited
conversion efficiencies.

In recent years, a new direction in frequency conversion
has emerged—adiabatic frequency conversion—a method
that is based on adiabatic evolution of the nonlinear optics
dynamics. The suggested method enables to overcome
the tradeoff between conversion efficiency and bandwidth
[13, 14]. Although it was first considered theoretically for
SHG by Baranova [15], the initial extensive experimental
research was performed in sum/difference frequency con-
version (SFG/DFG) in the undepleted pump approximation,
offering the use of SU(2) dynamical symmetry with the
analogous mechanism of Landau-Zener transition [16].
In the past few years, the fully nonlinear regime received
special attention. Reaserch on adiabatic interactions with
nonlinear dynamics as adiabatic OPA and OPO was con-
ducted by Phillips ef al [17, 18], Heese et al [19-21] and
Yaacobi [22]. In parallel, adiabatic DFG allowed an effi-
cient conversion of near-IR few cycle pulses to octave-
spanning mid-IR pulses [23, 24]. A general physical model
of adiabatic frequency conversion in the fully nonlinear
dynamics regime, was presented recently by Porat and Arie
[25]. In the past year, a first proof of adiabatic SHG was
demonstrated with nanosecond pulses [26], exhibiting an
unmatched temperature robustness. Yet, the efficient SHG
conversion of ultrashort pulses is still lacking. Here, the
adiabatic conversion method is generalized to include effi-
cient SHG conversion of ultrashort pulses. In our analysis,
we do not only solve the full nonlinear dynamics with arbi-
trary interacting ultrashort pulses and nonlinear phase-mis-
matched design, but also take into account Kerr effect and
two photon absorption of the generated SHG. This will be
shown to be a critical aspect in our experimental observa-
tions that was lacking in all previous research of adiabatic
frequency conversion.

2. Theoretical background

Let us start by developing the fully nonlinear dynamical
equations that dictate nonlinear conversion of any three
wave mixing, and in particular of SHG. We will present the
full nonlinear equations in the time domain, including two
photon absorption (TPA) and Kerr effect, and will discuss
the adiabaticity criteria for an efficient frequency conversion
process.

2.1. Nonlinear dynamics in three wave mixing

The electric field wave equation, in the presence of nonlinear
polarization is given by

LOE(F,1) Rk PL(F, 1)
ot o
where 1 is the material permeability, € is the vacuum permit-
tivity, n is the material refractive index and Pxu(7, 1) is the
nonlinear polarization [27]. In our analysis we assume that the

electric field is planar. One can therefore write:

V2E(F,1) — peon (1)

s 1 ptoo ] - y
B =— f —(A(z, W)@ HD 1 co)dw  (2)
27 Jo 2

where A(z,w) is the field amplitude spectral density and
Bw) =2
integral llmlts one can deduce the electric field: E(z,u.:) =
(A(z,w) + A" (z, —w))e¥«=_ By applying Fourier transform

is the material wave vector. By changing the

to equation (1), substitute E(z,u)), and assuming the slowly
varying amplitude approximation |%] < |BwWA iz, w)l,
equation (1) takes the form:

A" (z, —w)
0z

0A(z,w)
+
Jz

e—i:i(w'): — _,UWZPNL(Z, w.)' (3)

Without loss of generality, we will assume that the elec-
tric field is polarized along the x direction. By applying
Fourier transform to the nonlinear polarization term
Pai(z, ) = 25()X(z)E2(z, )X and substituting it into equa-
tion (3), the master equation for second order nonlinear inter-
actions is deduced:

a/i(z,w) 4 a‘-{*(lg —w) ]e—i.‘i(.d):
0z 0z
= 22X p0 ) EGw )
cn(w)

where ‘%’ stands for convolution. We continue the deri-
vation by expanding the electric field in terms of the
interacting pulses: E(z,w) = (Ei(z,w) + Ex(z, w) + E3(z, w)),
where Ej(z,w) = (Aj(z, w) + Aj(z, —w))e &% forj = 1,2, 3.
Aj(z,w), A2(z, w) and A3(z, w) are centered around frequencies
wy, wy and ws respectively, obeying w; + wy = ws. Inserting
the electric fields into equation (4) and observing the spectral
shape of the convoluted signals, one can deduce the following
set of equations:

M + BBz w) = (‘Z; By(z, w) * By(z, —w)

M +iB(w)Baz, w) = WX(Z)Bx(z, w) * Bi(z, —w)
cn(w)

M +iB(w)Bs(z,w) = X(( :B.(L,w) * By(z,w)

(5)

where Bj23(z,w) = A123(z, w)e In the continuous
wave (CW) case, the electric field is monochromatic:
Bj(z,w) = Bj6(w — wj) where j = 1, 2, 3. Substitution of the
monochromatic amplitudes into equations (5) yields the
conventional set of equations (in terms of A;) as presented
in [27]:

—if(w)

0A 5 iAG

S e A:e"‘“*

dz A2

% = —n.,A;A* —iAG

0z

% — —i’Y3A|AZC+iA't (6)
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wjx(z)
cn(wj)
(B(w3) — B(w2) — B(wy)) is the phase mismatch between
the interacting waves. Using equations (6) it is possible to
design the nonlinear second susceptibility x(z) in order to
compensate the inherent phase mismatch Afj. The obtained
design will work fine even in the case of quasi-monochro-
matic waves, having their bandwidth much smaller than
their central frequency, thus having an inherent phase mis-
match A3 which is nearly the same as in the CW regime.
It is possible to use equations (6) also for ultrashort pulses
whenever group-velocity mismatch (GVM) between the
interacting waves can be neglected. For example, in the case
of 10mm SHG potassium titanyl phosphate (KTP) crystal
designed to convert 1030 nm pump pulse into 515nm SHG
pulse, the maximum GVM along the crystal can be at most
TGVM = L(v;](/\sﬂg) — Vgl(APm“p)) = 6.8ps. It is therefore
not possible to use the conventional equations (6) to calcu-

where ;= is the coupling coefficient and Af =

late the dynamics in the picosecond regime.

For the ultrashort pulse case, we shall continue by
describing every pulse centered around central frequency
wj as a multiplication of slowly varying time domain ampl-
itude function modulated with the central pulse frequency:
Bj(z,w) = .7 (Bj(z,He“"). We will the following
identities:

use

F ~U(Bj(z, w — wj)) =€“'Bj(z, 1)
F Bz, w — w)) * Bz, w — wp)),,

wWtwWm

= el uniB(z, NB(z, 1) ™

where j, l,m € [1,2, 3]. Applying inverse Fourier transform to
equations (5) and using identities (7), the general nonlinear
dynamical equations are obtained in the time domain:

ng"’) + 17 (B + w)Biz )
—ix@).F "(&5"(33(2,!)33(2,!)))
cn(w + wy)

9BAGD | i 1w+ wBalz, )

<~

=— ix(z)ﬁ"‘(&ﬁ“ (B:(z.1)Bj(z, r»)
cn(w + wy)
0—335(5’—” + 15 ~1Bw + ws)Balz, w)
- ix(z)y‘*‘(&f(s.(z, Bz, r))].
cn(w + w3)
(8)

The left-hand side term 3(w + wj)Bj(z, w) accounts for the
dispersion the pulses experience through propogation along
the crystal, while the right-hand side accounts for the non-
linear interaction between the pulses. In the case of narrow-
band pulses, where the pulse bandwidth is much smaller than
their central frequency, (w + wj) = w; and equations (8) takes
the form:

‘93‘5, D 4 i 3w+ w)Bi W)

- ‘(”)“" X g (0 Bz, 1)

—BBE)(’Z‘ B Yl Bl

= i XD Bz, 1)
cn

()B‘(”‘ 3 + i N(Bw + w3)By(z, w))

X(@)ws

= o S Bi(z,1)Ba(z, 1) 9)

which are the equations obtained in [28].

The equations for the SHG process can be easily deduced
from equations (8). The pump pulse, centered around
w) = wy = w, interacts with itself and generates the SHG
pulse around wspg = w3 = 2wy:

OBsng(z, )

z

+ i N (B(w + wsuc)Bi(z, w))

= _ixe)F | Lt usHe g (g2
@ (Cn(W+WSHG) ( e t))
dB <s
”3(7 D 4 i Bl + wByte )
+w
= —ix(@F | T (Bauo(z, B 1) |
i@ (m(ww (Bswa(z DBy r)))

(10)
In our analysis we also take into account nonlinear pro-
cesses that are propotional to the real and imaginary parts of
the third order nonlinearity x>, namely Kerr effect and TPA.
When the optical material experiences TPA, an intensity den-
sity dependent term is added to the linear absorption, consti-
tuting an absorption coefficient a = ag 4 I, where S(mW™")
is the two photon absorption coefficient [27]. KTP absorbs in
the range A < 350 nm, hence, two photon absorption may limit
the performance of the SHG crystal if the generated SHG
wavelength is smaller than 700 nm. The second effect we take
into account is the Kerr effect, which is the physical process
constituting an intensity dependent refractive index term [27]
n = ng+ myl, where ny is the weak-field refractive index and
ny(m> W~ is the second-order index of refraction.
The incorporation of both TPA and Kerr effect to the simu-
lation is done in the time domain:

OBsug(z, 1)

5e + 1.7 “{(B(w + wsne)Bsua(z, w))

?(Bf,(:.n)]

W + WSHG
cn(w + wsHG)

- i\(z)&““‘[

a3
= EISHG(Z- DBsucl(z, 1)

— ikoma(wsno) (I 1) + Isua(z, ))Bsua(z. 1)
OBy(z, -
# +i¥ '(H(u; + wp)By(z, w'))
W+ wp
en(w+wp)

= - ix@).F ! [ 5 (Bsuo(z. 0B}z, r)))

— ikona(wp)(Ip(z. 1) + Isua(z. 1))By(z. 1)
(11
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Figure 1. Numerical propagation simulation of the pump pulse and its SHG in the presence of two-photon absorption. (A) The pump pulse
intensity as a function of propagation length (x-axis). The pump intensity remains centered around the figure time axis (y-axis) because the
presented time frame moves relative to the pump pulse. (B) The generated SHG intensity as a function of propagation length (x-axis). The
SHG pulse, having smaller wavelengths, moves slower than the pump pulse as expected in the normal dispersion regime. (C) The pump
(solid red) and the SHG (solid blue) energies as a function of propagation length. The total energy (solid black) is not conserved due to TPA

of the generated SHG.

|Bp(z. 1) [ np |Bsug(z. 1) [* nsuc
1)

where I,(z,1) = and Ispyg(z,t) =

21

2.2. Adiabaticity condition in the nonlinear regime

In an efficient second harmonic generation process, most
of the pump energy is transferred to the SHG pulse energy.
The pump is therefore by definition depleated. The compre-
hensive theory for an adiabatic frequency conversion pro-
cess, involving three wave mixing (TWM) was developed by
Porat and Adie [25]. The adiabacity criteria for the general
case, where the interacting waves may be depleated, was
devoloped in the CW regime. Start with defining the relative
strength of the phase mismatch compared to the nonlinearity
AT = AB/ /47,75 and continue with defining the scaled
propogation length § = z,/3777;. The adiabaticity criteria
takes the form:

d(P/P;) dAT
dAD  d¢

<v (12)

where (Pii, Qli) are the canonical coordinates of the two sta-
tionary states of the system, P is the photon flux excess of the
two low-frequency waves over the high-frequency wave, P3

is the total photon flux and v = is the fre-

quency in which the system orbits its fixed point in the phase
space. The adiabacity condition in equation (12) is suitable
for the CW regime or to a narrow-band pulses, and cannot

be used when analyzing ultrashort pulses with bandwidth not
negligible compared to their central frequency. Adiabatic evo-
lution theory for ultra-short pulses is still absent, and numer-
ical simulations are therefore required.

3. Numerical approach and predictions

The numerical simulations of equations (10) were performed
by implementing the split-step Fourier method for the linear
part of the equations, while the numerical integration for the
nonlinear part is implemented using the 4th order Runge—
Kutta method. The simulation procedure for every integration
step Az starts with accounting to the linear term. The pulses
are first propagated:

—iLsnaip(z.w)Az o,
Csngrp = e~ LsnanlaA By (z, w)
(w + wsHG/p)

ve(wp)

Lshc/p(z, w) = B(w + wsHGrp) — (13)
All pulses are simulated relative to a time reference that
moves together with the pump pulse, hence, a time domain

(w + wsHG/p

. ) . . .
translation term ———" is added to the dispersion.

plwp

The second step is to account for the nonlinear term,
which is numerically integrated in the time domain. Using the
amplitudes Csug/p(z, w), Bsuap(z + Az, w) are calculated. The
numerical procedure is iteratively repeated until the numer-
ical integration is done all over the crystal optical axis. An
example of the simulated amplitudes in the time domain is
shown in figure 1 .
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Figure 2. Simulated conversion efficiency as a function of central pump wavelength, for different energies and pump chirp. (A) The
conversion efficiency is simulated for several energies for both 7 = 20 °C and T' = 100 °C. (B) The conversion efficiency curve is simulated

for several input pump chirp.

We would like to numerically examine the robustness of the
designed SHG crystal without taking into account undesired
parasitic effects as TPA. The crystal grating function Ky(2) is
Ko(zem) = (118.2423, — 45.192%, — 997.92z¢, + 7957.08) cm ™}
where the second order nonlinear susceptibility is given by
x(z) = xsign(cos(K,z)), thus fluctuating between +x to —x
in batches spanning between 3.5 um to 4.5 pm. The crystal
dimensions are depicted in figure 3. The crystal grating
period A = % adiabatically changes from A = 7.4 um to
A =84 um aiong the optical axis of the nonlinear crystal.

We define the energy conversion efficiency of the crystal
to be the ratio between the generated SHG pulse energy to the
input pump pulse energy:

_ Esnc(zhina)
Ep(zinilial)

In figure 2(A) the crystal conversion efficiency is simu-
lated for an input Gaussian pump pulse with AXgpwpm = 1
nm, A7rwam = 4 ps, T'= 20 °C and mode field diameter of
0.5 mm for several energies. It is therefore shown that efficient
wideband ultrashort second harmonic generation is feasible
in a single KTP crystal, exhibiting a flat conversion effi-
ciency curve with a bandwidth of 75nm, spanning from 980
to 1070 nm. It is shown that decreasing the energy lowers the
typical conversion efficiency, while maintaining the plateau in
the conversion efficiency curve.

We also added to figure 2(A) the conversion efficiency for
T = 100 °C in the dashed line. It is clear that the design is not
prone to temperature changes. The reason for its robustness
is the fact that the conversion efficiency will be dramatically
altered only for wavelengths having their rapid adiabatic pas-
sage (RAP) near the crystal edges, thus sensitive to refractive
index change that might change the RAP position outside or
inside the crystal. Refractive index dependence with temper-
ature was taken from [29].

We have also examined the robustness of the adi-
abatic design to different pulse chirps. In figure 2(B), the

conversion efficiency is plotted for the same Gaussian pulse
as in figure 2(A), being chirped in the time domain. 7/7y is
the ratio between the chirped pulse full width half maximum
(FWHM) in the time domain and the transform limited pulse
FWHM. The interaction term generating the SHG pulse is

proportional to Blz,(z, 1), hence proportional to the pump inten-
sity. It is therefore clear why stretching the pulses in the time

domain has the same effect as lowering the pulse energy,
leaving the pump intensity unchanged.

4. Experimental results

The experiment setup is depicted in figure 3. The second output
of an optical parametric chirped pulse amplification (OPCPA)
system (Venteon dual) served as the front end, delivering 10
J, 2 Mhz pump pulses. The CPA beam is then focused on an
adiabatically aperiodically poled KTP (adAPKTP) crystal,
extraordinary-wave (e-wave) polarized along the crystal c-
axis. The residual pump and the generated SHG were seper-
ated using a dichroic mirror around 950 nm. The spectrum of
the pump and the generated SHG pulse was measured using
a HORIBA spectrometer and displayed in figure 3, thus dem-
onstrating an efficient conversion efficiency all over the pump
spectra between 1020—1040nm.

The ad APKTP domain structure was fabricated in uncoated,
I mm thick z-cut, flux grown KTP plates by ‘Raicol Crystals’.
Conventional photolithographic process and electric-field
poling were used to create the designed domain structure [30,
3.

It was possible to control both the temporal and the spec-
tral properties of the pump pulse using a mechanism located
inside the venteon CPA module. By spatially stretching the
beam spectra using a grating, it was feasible to truncate parts
of the scattered beam thus controlling its bandwidth, altering
the measured 20 nm pump spectra presented in figure 3 into
a Gaussian-shape pump pulse centered around 1036 nm with
a bandwidth of 10nm. An adjustable mirror, placed after
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Figure 3. The adiabatic SHG experimental apparatus. ND—neutral density filter, CM—curved mirror, DM—dichroic mirror, ad APKTP—
the designed crystal. Left upper inset—the measured pump spectra, left lower inset—the inner CPA module (stretcher), enabling us to
control both the time domain and the spectral domain characteristics of the pump pulse, right upper inset—the crystal physical dimensions,

right lower inset—the measured SHG spectra.
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Figure 4. Conversion efficiency as a function of pump energy. Deviation between the loss-free numerical predication and experimental
results can be attributed to TPA. Inset: the SHG pulse energy and the pump pulse energy exhibit quadratic dependency in small energy.

the grating, enabled us to change the relative phase between
the pulse wavelengths, hence changing its duration between
350 fs to 3.5 ps in the full-bandwidth case, or between 600 fs
to 2.6ps in the truncated-bandwidth case. Measurements of
the pump pulse duration were done using frequency resolved
optical grating (FROG).

Conversion efficiency measurements were conducted
for a large span of pump energies and presented in figure 4.
For low pump energies, a good correspondence between

numerical prediction and experimental results was achieved,
even without taking into account parasitic effects such as
TPA. For the strong pump regime, we have examined several
mechanisms in order to explain the early saturation in the
conversion efficiency curve. We examined through numerical
simulation back-conversion of the generated SHG and other
nonlinear cascaded effects through TWM, and found that such
effects are not occurring in our adiabatic design. Possible
degenerate four wave mixing (FWM) interactions were also
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Figure 5. Temperature robustness. (A) Temperature barely affects the conversion efficiency for a very wide span of temperatures. The
robustness is not altered with pump energy, as discussed in figure 2(A). Measurements of the conversion efficiency with the crystal cut

in half give better results than those obtained with the whole crystal (green dots versus red dots), attributed to shorter possible absorption
length. (B) SHG spectra is measured at 0.1 g for different temperatures. As seen, the different spectra are hardly affected by temperature.

35 r T
== Numerical Prediction

30 ® Experimental Results |
X
‘=25
>
2
o 20}
§ 0.8 (A) 1 (B)
b g z08
2 15'”20.5 E, - 1
g : 0.4 §
= 10}-T < 04 .
S |5 E
c z 02 202
Sst |/ O\ | .
0 0
4 05 0 05 1 3 2 1 0 1 2 3 4
Time [ps] Time [ps]
0 i i
0.57 1 1.5 2 2.5

Pulse Duration [ps]

Figure 6. Pulse duration effect on conversion efficiency. Inset (A) FROG measurement of 660 fs pulse duration. Inset (B) FROG
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dismissed due to phase mismatch considerations. We inserted
the pump pulse into a bulk-KTP and experienced no absorp-
tion at all, giving rise to the fact that the generated green is
absorbed during propagation along the crystal optical axis,
decreasing the measured conversion efficiencies. Assuming
that the absorption is attributed to TPA of the generated SHG
pulse and incorporating it into the simulation, enabled us to
fit the numerical predication to the experimental results at the
full nonlinear regime with 3 = 4(cm GW™"), in very good
agreement with the nonlinear coefficient measurements of
(532 nm) [32]. Kerr effect included in the simulation had
no significant effect. The performance of the adiabatic SHG
design has been validated for both the broader spectrum of
20nm as well as to the 10nm truncated one.

We also measured the dependence of the conversion
efficiency as a function of the temperature of the nonlinear
crystal. The results, which are presented in figure 5, exhibit
a complete robustness of the designed crystal and exper-
imentally validate the numerical prediction presented in
figure 2(A). It is shown that temperature barely affects the
adAPKTP performance. The conversion efficiency along
with the SHG spectra are indifferent to temperature over a
very wide range of more than 100 °C.

In order to examine whether the conversion efficiency is
bounded due to TPA as predicted by simulation, the ad APKTP
crystal was cut into two, hence decreasing the length in which
SHG can be absorbed throughout. The saturation plateau in
the conversion efficiency curve was now measured to be in the
range of 40%-50%; justifying our assumption.

The effect of stretching the pump pulse on the conversion
efficiency was also examined for the truncated bandwidth case.
The pump energy was measured to be 0.7 zJ. The pulse dura-
tions, defined by 10%-90% knife edge and FROG measure-
ment, varied between 660 fs (figure 6 inset (A)) to 2.58 ps (figure
6 inset (B)). In our measurements we observe that although the
intensity density is decreased by ~4, the conversion efficiency
did not change dramatically, as could be naively expected when
comparing to the CW regime where 7 o I, [27]. The robustness
shown in figure 2(B) is experimentally validated. Numerical
predication with 3 = 4(cm GW™!) is in agreement with exper-
imental results. Measurements in the full bandwidth case were
also conducted, with pump energy of 0.9 yJ, exhibiting a
decrease in conversion efficiency from 1 = 27% to = 9% as
pulse duration increases from 290 fs to 3.23 ps.

5. Conclusions

To conclude, we have experimentally demonstrated a robust
and efficient SHG of ultrashort pulses based on adiabatic fre-
quency conversion. We have shown that the conversion from
near-IR to visible in a SHG process is not sensitive to the band-
width of the fundamental pulse and to the temperature of the
nonlinear crystal. It was also demonstrated that stretching the
pump does not have a critical effect on the conversion process.
A time domain simulation for any TWM process was devel-
oped, and good correspondence with experimental results has
been obtained. The frame work of the simulation enables us
to easily incorporate parasitic effects, both in the time or in

the spectral domain, and can be generalized to include high-
order nonlinear effects such as FWM for further research on
ultrashort frequency conversion. Such an achievement can be
useful in the design of extremely stable frequency conversion
optical elements, aimed to perform at harsh environmental
conditions as adverse temperatures, shocks, tensile stress
and external pressure, as well as in fundamental research in
second harmonic imaging microscopy and plasmonic nano-
structures. Thus, appealing for a wide range of applications in
medical procedures, avionics, satellites, and field-deployable
communications systems.
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We experimentally demonstrate an efficient broadband sec-
ond-harmonic generation (SHG) process with a tunable
mode-locked Ti:sapphire oscillator. We have achieved a
robust broadband and efficient flat conversion of more than
35 nm wavelength by designing an adiabatic aperiodically
poled potassium titanyl phosphate crystal. Moreover, we
have shown that with such efficient flat conversion, we
can shape and control broadband second-harmonic pulses.
More specifically, we assign a spectral phase of absolute
value and 7-step, which allows wavelength tunable intense
pump-probe and amplitude modulation of the broadband
second-harmonic output. Such spectral phases serve as a
proof of concept for other pulse-shaping applications for
nonlinear spectroscopy and imaging. © 2017 Optical
Society of America

OCIS codes: (320.5540) Pulse shaping; (320.7090) Ultrafast lasers;
(320.7100) Ultrafast measurements; (320.7110) Ultrafast nonlinear
optics; (320.7150) Ultrafast spectroscopy.

https://doi.org/10.1364/0L.42.002992

Ultrafast laser sources are at the heart of ultrafast experimental
science. In the past two decades, ultrashort pulse laser oscillators
and amplifiers have become common equipment in the funda-
mental scientific exploration, as well as in a handful of industrial
applications. Those sources which, by their nature, are broadband
and coherent, allow exploring many phenomena that occur at the
ultrafast timescale of many scientific processes and dynamical
evaluations in nature [1-3]. Due to the extremely high peak
power, nonlinear optics in the ultrashort regime results in efficient
frequency conversion generation processes and, therefore, is of
great interest in a vast number of fields, such as color generation,
nonlinear spectroscopy, imaging for metallurgy, photo-induced
dynamics, and noninvasive background-free diagnostics [4-6].
As these ultrashort pulses are much faster than any electronic sys-
tem, many unique methods have been developed to characterize
them. These include finding ultrafast pump-probe and interfero-
metric capabilities, allowing femtosecond temporal resolution
experiments and ultrafast characterization methods, such as fre-
quency-resolved optical gating (FROG), multiphoton intrapulse

0146-9592/17/152992-04 Journal © 2017 Optical Society of America
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interference phase scan and spectral phase interferometry for
direct electric-field reconstruction [1,7-9]. Among the various
nonlinear conversion processes, three-wave mixing and, especially,
second-harmonic generation (SHG), became widely used. Yer,
frequency conversion in the ultrashort regime remained quite
complicated, as the conventional conversion devices usually
exhibit a tradeoff between the conversion bandwidth and the
conversion efficiency, rooted in the phase mismatch between
the interacting waves, which usually compensates for only a nar-
rowband of frequencies [10,11].

In the last decade, adiabatic frequency conversion has gained
high interest and has been the subject of vast theoretical and ex-
perimental research [12-19]. The adiabatic method has
overcome the tradeoff between conversion efficiency and
bandwidth for sum frequency generation (SFG), difference fre-
quency generation (DFG), and optical parametric amplification
(OPA) and, recently, in SHG processes. In the fully nonlinear
regime, where all interacting waves considerably change their
power, efficient broadband conversion is more difficult due
to the complex nonlinear dynamics. In the past few years, there
were tremendous theoretical and experimental efforts to recon-
cile the requirements of the fully nonlinear regime processes and
the high efficiency broad-bandwidth frequency conversion using
the adiabatically varying design. A comprehensive theory for an
adiabatic frequency conversion process of any quasi-CW three
waves was developed by Porat and Arie [20] and by Phillips e# al.
[21], later validated by Leshem ez 4/ [22] for the case of adiabatic
SHG in the nano-second regime. The theoretical generalization
and the experimental demonstration of adiabatic SHG for ultra-
short pulses, which also take into account dispersion effects and
higher-order nonlinear parasitic effects, was later developed by
Dahan ez al. [23], demonstrating an efficient robust frequency
doubling fora75 nm acceptance bandwidth, thermal acceptance
of more than 100°C, and chirp variation of 300 fs—3.5 ps, thus
displaying an unmatched robustness under both environmental
conditions and characteristics of the incoming pulse. However,
to satisfy the adiabatic criteria, all of these demonstrations of
adiabatic frequency conversion in various nonlinear processes
have relied on pump energies requiring amplification.

In this Letter, we experimentally demonstrate that an adia-
batic design is capable of extremely robust efficient SHG also at
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power levels characteristic of high-repetition-rate femtosecond
oscillators. We show that with pulse peak energies of nanojoule
regime, one can achieve above 50% of energy conversion effi-
ciencies for 70 fs Ti-sapphire pulses. Furthermore, the flat-top
conversion frequency response of the presented design allows us
to perform broadband pulse shaping manipulations prior to the
nonlinear optical conversion, thus not suffering from the spec-
tral limitation that is conventionally imposed by the limited
bandwidth of birefringence or regular periodic crystal designs.
More specifically, using a spatial light modulator (SLM) in a 4-f
pulse shaper, we present a tunable pump-probe apparatus based
on a varying absolute spectral phase profile in the frequency
domain. In a similar way, we show that when applying a 7-step
spectral phase, coherent control of the SHG spectrum can be
achieved, imposing a complete dip in the SHG, originating in
the complete destructive interference of the second-harmonic
field of the fundamental waves [23].

The experimental setup, illustrated in Fig. 1, consists of an
80 MHz repetition rate tunable coherent oscillator between
690 and 1040 nm (Mai-Tai) which served as the pump pulse,
delivering 17.5 nm full width half-maximum (FWHM) ~70 fs
transform-limited pulses, with energies spanning 10-30 n].
The pump pulse then passes through JENOPTIK 640D
SLM, enabling us to alter the pump pulse spectral phase
and temporal shape before it is focused into an adiabatically
aperiodically poled potassium titanyl phosphate (adAPKTP)
crystal. The residual pump and the generated SHG are sepa-
rated using a dichroic mirror around 950 nm. The spectrum
of the SHG pulse, measured using an Avantes spectrometer,
is displayed in the right lower image of Fig. 1, demonstrating
efficient conversion over the entire pump-pulse spectrum.

The phase mismatch between the interacting waves is com-
pensated for by using the poling method [10]. In the presented
design, the second-order nonlinear susceptibility y(z) fluctu-
ates between +y and -y in batches determined by y(z) =
sign(cos(l(g(z)z)), where the grating function Kg(z) is given

Fourier plane
H Parabolic mirror

Fig. 1. Adiabatic SHG experimental apparatus. The programmable
4-f of the quadratic phase tunable pulse shaper is composed of a pair of
diffraction gratings with 600 lines/mm and a pair of parabolic curved
mirrors. Two-dimensional SLM was placed at the Fourier plane and was
used as a dynamic filter for spectral phases. ND, neutral density filter;
CM, curved mirror; DM, dichroic mirror; ad APKTP, adiabatically ape-
riodically poled KTP. Left lower inset—the measured pump normal-
ized spectra. Right lower inset—the measured SHG normalized spectra.
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by K ,(2) = (118.22° - 45.22* - 997.92 + 7957.1)[cm™"], and
z spans the crystal length z € [-0.5 cm, 0.5 cm].

The crystal grating period A = 27/K,(z) adiabatically
changes from A = 7.1 pm to A = 8.9 pm along the optical
axis of the nonlinear crystal.

In our analysis, we use the three-dimensional generalization
of the fully nonlinear dynamical equations, which dictates the
nonlinear conversion of any three-wave mixing and, in particu-
lar, the depleted ultrashort SHG case [23]. Two-photon ab-
sorption (TPA) of the fundamental pump and the generated
SHG was also taken into account as in the case of Ref. [23],
likewise found to be of great importance. Since the SHG proc-
ess occurred within the Rayleigh range of the pump pulse,
spatial diffraction has been neglected, eliminating the interac-
tion between different areas of the transverse intensity profile.

The following three-dimensional generalization of the SHG
[Egs. (1) and (2)], is applied for predicting the SHG process
behavior:
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where Bsg (7, 2, @), B,(r, 2, w) are the electric field spectral
density amplitudes of the pulses, Bspc(7, 2, #) and B, (7, 2, 1)
are the electric field modulation around the pulses central
frequencies, and () is the dispersion relation. All physical
variables in Eqs. (1) and (2) are carefully defined in Ref. [23].

Incorporation of the measured FROG pump pulse and the
measured 40 pm FWHM Gaussian beam profile into the sim-
ulations yields great agreement with the experimental results for
p = 4[], the TPA coefficient, in correspondence with the
nonlinear coefficient obtained in Refs. [23,24].

The energy conversion efficiency of the crystal is the ratio
between the generated SHG pulse energy to the pump pulse
energy:

_ Esnc (Zou)
E )

where z,, and z;, are the locations of the crystal output and
input facets, respectively. The conversion efficiency measure-
ments as a function of the central pump wavelength are
presented as red dots in Fig. 2(a). Although conversion effi-
ciency measurements were limited in the range of 970-
1030 nm due to source limitations, the adiabatic design is
capable of an efficient frequency doubling within a bandwidth
of 80 nm, shown as blue solid line.

Next, we have added a broadband 4-f pulse shaper based on
computer-controlled SLM positioned at its Fourier plane. First,
by varying the spectral quadratic phase [25], we have used it as
an aligned tunable compressor that can control the group delay
dispersion of the fundamental, which also influences SHG out-
put spectral distribution. The architecture for the 4-f pulse
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Fig. 2. Conversion efficiency as a function of (a) pump central
wavelength and (b) pump energy. The blue curve is the conversion
efficiency predicted by our numerical simulations with the addition
of TPA. (a) Conversion efficiency dependence with a pump central
wavelength. (b) Conversion efficiency as a function of pump energy
centered ata 1005 nm wavelength. The deviation between the loss-free
numerical prediction (green curve) and the experimental results (red
dots) is attributed to TPA (blue curve).

shaper includes two pieces of 600 grooves/mm ruled
grating which disperse the light angularity into a telescope,
based on a pair of curved 913.4 mm parabolic mirrors,
which fits a 4-f arrangement in a chirped pulse amplification
system.

The pump-probe apparatus is implemented by applying
an absolute-valued spectral phase centered within the
bandwidth of the fundamental spectral phase, denoted by
Wppy 1€, p & |@ = @pp|. Determined by the sign of the linear
phase slope, different parts of the pump spectrum shifted in
opposite directions in the time domain, therefore enabling
splitting the incoming pump pulse into two localized pump
pulses, with an extinction ratio and delay determined by
@pps and the absolute phase slope. The idler’s spectrum
2rc s presented in Fig. 3 for an input

dependence with 44, = e
hyperbolic secant pump pulse centered on 1005 nm. When
applying the absolute-valued shape spectral phase in the center
of the pump pulse Ay, = 1005 nm, as shown in Fig. 3(a-I),
the initial pump pulse splits into two pulses with the same peak
intensity, resulting in a symmetrical normalized pump probe
SHG spectra. When the absolute-valued shape phase is not
symmetrical with respect to the pump central frequency, as
shown in Fig. 3(a-II), the generated asymmetrical pump pulses
result in asymmetrical SHG spectra.

We proceed by applying a zz-step spectral phase. As a result
of destructive interference between the different frequency
components, the z-step induces SHG/SFG pulses with spectral
dips at different wavelengths. It is worth noting that due to the
mathematical similarity between the perturbative solution of a
TPA process in a non-resonant two-level quantum system and
the instantaneous SHG process (where time scaling # is replaced
by =z the propagation length in crystal), most of the
coherent control schemes that were applied in atomic physics
can be adopted to a pulse-shaped SHG using the ASHG non-
linear crystal. In order to demonstrate the shaping of the SHG
spectra, we have also applied a z-step function at different
locations on the pump spectral phase.

We consider the case of second-harmonic generation of
ultrashort pulse with an electric field distribution of &(z).
From second-order non-resonant time-dependent perturbation
theory, the instantaneous second-harmonic spectral field can be
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Fig. 3. Absolute phase effects on the SHG pulse for different wyy,,
the central absolute phase frequency. (a) Illustration of absolute phase
concept. (b) Simulated normalized SHG spectra. (c) Experimental
normalized SHG spectra.

found by the autoconvolution of the fundamental spectral field

€(Q) = F.T{e(¢)} [10], which is described by

eshc(wg) = ‘/ €*(2) - explimyr)dt

2

oo 2
- ‘ / &Q)é(w, - Q)de| @)
-0
where @y is the SHG frequency.
If we perform change of variables as Q — Q + "_% , and write
explicitly €(Q) = A(Q) exp[iDP(Q)], we obtain Eq. (5):
L @), @,
A
2
-exp ch(%+ Q) i d>(%-9) Hd.Q :
(5)

where A(w) and ®(w) are the spectral amplitude and spectral
phase, respectively.

The equation reflects that the SHG/SFG occurs for all pairs
of photons with frequencies which add up to @, and lie within
the spectrum of the exciting pulse. It is easy to see that when the
phase cancels (i.e., @5 + Q) + @5 - Q) = 0) and, for a
symmetric amplitude A(w) with respect to 5, the amount
of SHG is maximized. This is in agreement with the finding
of Meshulach and Silberberg [25,26], where they showed that
an anti-symmetrical spectral phase can result in the same TPA
rate as transform-limited excitation. The same behavior
happens for the instantaneous SHG/SFG case, where the
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Fig. 4. ASHG conversion in KTP crystal excited by a pulse with a
spectral phase of 7-step, as a function of the step position. (a) Illustration
of SLM-induced 7-step phase centered at ;. (b) Experimental
results. (c) Simulation results. The simulation results were obtained
by inserting the measured spectrum of the original pulse.

transform-limited pulse (P(Q) = 0), and every anti-symmetric
phase with respect to 5, result in the same SHG generation.
Therefore, the anti-symmetric phase can significantly affect the
shape of the pulse to have much smaller amplitude and a much
longer duration, it does not affect the SHG [24].

Our experimental results of applying an anti-symmetric
n-step phase each time at a different wavelength show different
SHG/SFG spectra for each measurement. As expected, this de-
structive interference appears in the SHG/SFG if the step is not
in the middle of the spectrum, and could even lead to complete
destructive interference of the SHG/SFG signal at a specific
wavelength. In Fig. 4, we show the experimental results, as well
as the simulations of broadband ASHG conversion as a func-
tion of the m-step position. The simulation results were ob-
tained by inserting the measured spectrum of the original
pulse. Very good agreement is obtained between the experi-
mental results and the numerical simulations.

To conclude, we experimentally investigate the performance
of an adiabatic aperiodically poled KTP crystal using a conven-
tional femtosecond high-repetition-rate oscillator in the nano-
joule energy regime. We show that efficient wideband
ultrashort second-harmonic generation is feasible in a single
crystal, experimentally demonstrating an acceptance bandwidth
bigger than 40 nm with nanojoule level excitation.
Furthermore, we show that the broadband operation of the
adiabatic crystal design enables us to perform pulse shaping ma-
nipulations on the fundamental pulses. An SLM-dependent
tunable pump probe was given as an example, where altering
the pump probe spectral and temporal characteristics is possible
without the need of realigning the experimental apparatus.
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Based on the broad spectral conversion response of the
ASHG nonlinear crystal. We show that the SHG/SFG
spectrum can be manipulated by tailoring the shape of the ex-
citing ultrashort pulse. In particular, we investigate the effect of
a spectral phase modulation of absolute value and a 7z-step spec-
tral phase. We show that spectral shaping, as well as complete
destructive interference in the SHG can be achieved. In addi-
tion, we show that certain 7-step spectral phase modulation,
which leads to long pulses, induces SHG as effective as trans-
form-limited pulses. The basic principles presented here open a
wide new area for theoretical and experimental work, as well as
possible applications in nonlinear spectroscopy and in atomic
and molecular physics.

Funding. H2020 European Research Council (ERC)
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7. Difference frequency generation mid-IR pulse compression

The mid — IR regime is of great importance in many scientific areas as chemistry, materials science
biology and condensed matter physics, as it covers many of the vibrational absorption bands of
molecules. The spectroscopic optical methods in the MIR enable us to capture the material
“fingerprints” through its absorption, transmission spectra and phase distortions, thus providing us with
an effective mechanism to determine the local structure and dynamics of individual molecule. By
providing a broadband- ultrafast source, one can also account to the femtosecond time dynamics of
molecules conformational changes, necessary for femto-chemistry experiments. Broadband ultrashort
MIR source is also desired for attosecond pulse generation, as the number of harmonics generated in
the strong field regime scales with A.

As broadband sources in the MIR are lacking, frequency conversions are used in order to create
such sources. In the following, we examine the generation of a MIR pulse through conversion between a
broadband Ti-Sappire oscillator pulse and a strong pump. Using the simulation developed in the
previous sections, a robust optical scheme for the generation of an ultrashort MIR pulse is presented.

The compression scheme contains Spatial Light Modulator (SLM), diffractive element and an
adiabatic crystal, and the conversion is between the output of a Ti-Sappire oscillator, spanning between
600nm to 1000nm and a narrowband pump pulse around 1032nm.

The problem was to find the optimal parameters for the compression scheme, which includes
the pulses time durations, the pump pulse bandwidth, the SLM phase, the distances the pulses goes
through the air before the nonlinear crystal, and the dispersive element length and material, to obtain
both efficient conversion all along the signal spectra as well as SLM phase requirements well within its
operational limitations. The optical scheme is plotted herein:

Signal AIR . .
= S| SsLm G dler | ar | Dispersive
6-10m element Femtosecond
600nm-1000nm. 1.5nm-5nm MIR pulse
Picosecond pulse Picosecond pulse
Pump Delay
1032nm,1nm-10nm

bandwidth. Picosecond pulse

Figure 25. MIR pulse generation and compression scheme.

The compression scheme is based on the fact that when the pump spectral bandwidth is much
smaller than the signal pump spectra, the generated DFG pulse phase is linear with the signal pulse

phase. By assigning Ap(z, W) = Ap(z)é'(a)—a)p) to Eq. set (3.13) one obtains:
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(7.0) 0,A(2,0)+ I f(@)A(2,0) = (( AG o)A (2,-0) =

0 @A @, o)

c n(w)

)
)

It is therefore clear that by adding the incoming signal pulse phase the opposite of the generated idler
phase, using the SLM, one can obtain a MIR pulse with no phase difference between its spectral
components, that is to say transform limited pulse. Due to damage threshold limitations, we wish the
MIR pulse to be compressed not inside the adiabatic crystal but rather inside some simple diffractive
element (silicone in our case). The MIR pulse phase added to the signal pulse was therefore calculated
after the propagation inside the silicone.

The simulation parameters are the following:

Simulation Parameters Simulation Value

Pump Pulse Central Wavelength 4, [nm] 1032

(Gaussian Pulse)

determined in the following

Pump pulse FWHM A, [NM] 1-8
Pump Pulse Energy E [uJ] 20
Signal Pulse Spectra Spectral measurements, plotted below
Signal Pulse Time Domain FWHM A7, [pS] Detailed value will be determined in the following
Signal Pulse Energy E [uJ] 1
Effective Diameter [um] 150
pm 27
Nonlinear Susceptibility y(z) v
Crystal Length[mm] 20
Crystal Material Mgcln5

_ _ 2
Crystal Grating Function ‘:Cim} Kg (Zcm) N (3569 71420'“ +156Z°m )

Dispersive element Silicone. The length will be determined in the
following

Normalized signal intensity

The input simulated Ti-Sappire oscillator spectra is the 09“\
08—+ A .

07 fo TI 'Ir "‘{

06— R — »

experimentally measured venteon laser spectra:

0.5} i |

0.1

59 650 700 750 800 850 900 950 1000
lambda[nm]
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7.1 Conversion efficiency dependence with pulses durations

Before Examining the compression scheme we wish to find what is the best combination of signal and
pump pulses durations such that efficient frequency conversion is achieved all over the signal spectra.

P.(z;,4
We define (7.2)7(1) :1_ﬁ’ where P.(z,A1)is the signal spectra as function of the crystal
S Zi'
optical axis. The next quantities are defined: (7.3)7,, =mean(;(4)),and (7.4) o, =std(7(4)).
TMvean 1S @ measure for the conversion efficiency, while o, is a measure of the effectiveness of the

conversion efficiency all along the signal wavelengths.
For a pump pulse bandwidth of 1nm, the following graphs are obtained:

Conversion Std Conversion Mean
0.8
0.7
@ I 0.6
= o=
c c
2 ]
B T 10 05
=1 3
- 2 12
g— E‘ 0.4
3 3
o o 14
0.3
16
18 0.2

5 10 N 10 15
Signal Duration [ps] Signal Duration [ps]

Figure 26.The DFG average conversion efficiency 7},,.,, and conversion efficiency variance 0-77 as function of the pulses time

durations, for a pump pulse bandwidth of 1nm.

For a pump pulse bandwidth of 8nm, the following graphs are obtained:

Conversion Mean

Conversion Std 08
2 2 07
4 _ 4 0.6
2 6 g ¢
<. S 8 0.5
a [a}
g- 12 g’ 12 0.3
S ]
a 14 i 0.2
16 16
0.1
18 18
5 10 15 5 10 15
Signal Duration [ps] Signal Duration [ps]

Figure 27. The DFG average conversion efficiency 7),,.., and conversion efficiency variance 0-77 as function of the pulses

time durations, for a pump pulse bandwidth of 8nm.
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One can conclude from the previous graphs, that both conversion efficiency as well as its robustness all
along the signal spectra is dictated by the pump and signal pulse durations and is insensitive to the
pump spectral bandwidth. The pulses time durations for optimal conversion are obtained:

e Pump pulse duration shall be between 6ps-8ps.
e Signal pulse duration shall be smaller than 2ps.

All pump pulse durations are defined using (10%-90%) knife edge method, namely the pulse duration
between 10% to 90% of the pulse cumulative energy distribution function:

f(t)= [j |AG)[ drj/£T|A(r)|2 drj

) =1.0871 70y -

As displayed, conversion efficiency is maximal when the pump pulse duration is between 6ps-8ps. Hence

which for a Gaussian pulse results in T 10%-90%

in following simulations, the simulated (10%-90%) pump pulse duration was taken to be 7ps.

7.2. Compression feasibility dependence with signal chirp

While efficient conversion demands very short signal pulses (<2ps), it was not a priori clear that
compression is feasible with such pulses. In the following we examined the compression feasibility for

different signal chirps, spanning between C, =—5-107"[s*]to C, =+5-107'[s*], where
4. (@) =C, (0—a,*™)", and 2, =763[nm].

For every given signal chirp, air propagation length before the nonlinear crystal and air propagation
length after the nonlinear crystal, we calculated the total phase that needed to be compensated by the
SLM for various lengths of the silicone element. A measure for the total phase needed to be
compensated by the SLM is the following:

(7.5) SLM = max (<«ldler Phase) —min (<xldler Phase)

compensation 1.8m<4;<5.5 um 1.8m< 4 <5.5um

We observed that the total phase defined above is minimal for specific silicone lengths, which enabled

us to examine the compression scheme only for a discrete set of lengths, which we denoted as {Lopt}.

The SLM at the specific set of silicone lengths { Lopt} is denoted as

compensation

(76) q)opt =SLM compensation (Lopt )
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Numerical trial and error examinations show that good SLM compensation can be done whenever
d)opt < 350[Rad]

15000

[Rad]

10000

Compensation value

5000

SLM

0 L L L L
2 4 6 8 10
Silicone Lengths[mm]

Figure 28. SLM compensation phase as function of the silicone length.

For every signal chirp and calculated silicone length, the SLM phase was calculated, interpolated to 640
values, and inserted again into the simulation, yielding a compressed pulse with phase we seek to be
flat. We measured the phase difference by Delta SLM:

(7.7) Deltag , = max(<cidlerc,, o) —Min(<cidler,

ompressed )

In appendix D section (10.4.1), we present the simulated @, defined in Eq. (7.6) for various values of

signal chirp, and for a span of air lengths before and after the nonlinear crystal. Observing the tables
in the appendix, several conclusions are deduced:

e Itis easier to compress the MIR pulse in the regime C_ e[-4-107" 1.107"][s’].

e For agiven air propagation lengths, the shorter the crystal the compensation is better (less
phase to compensate).

e The transform limit case is not inferior in terms of compensation vs. other signal chirps.
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7.3. Signal conversion efficiency dependence with signal chirp, after SLM
compensation

We would like to understand what the desired signal chirp in terms of efficiency is, after being
compensated by the SLM.

E e (2
The quantities (7.8)7 :L(f),and 7.9) o, =std(n(1)) are presented for the different
& B (2) 0 =3
Signal \ =i

scenarios. 77 measures the frequency conversion efficiency, and GniS a measure to the conversion

efficiency wavelength dependence.
In appendix D section (10.4.2), we present the simulated efficiencies 77 and o, for various values of

signal chirp, and for a span of air lengths before and after the nonlinear crystal. Observing the tables in
the appendix, several conclusions are deduced:

7.4. Transform limited examination
After being convinced that the transform limited case is not inferior to the chirped case, we examined

the transform limited case thoroughly. The examination is detailed in appendix D section (10.4.3).

Several conclusions can be deduced from the examination:

. In terms of both conversion efficiency and compensation quality we wish the crystal
length to be ~ 10mm

. The longer the signal goes through the air, conversion efficiency fluctuation is smaller
o, =std(n(4)) -

. The following useful formula is deduced:

. (7.9) Lypga™" ~ 7.76+ 4.31-n +5.68(L,,"**[m] -3)m—0.795(L,;, " [m] -6 )[mm]

where n,m are discrete numbers.

. Buying 16mm of silicone allows a robust compression scheme for every propagation
distance before the nonlinear crystal in the range of 3-4m, and with propagation
distance after the nonlinear crystal in the range 6-10m
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7.5 Efficient MIR pulse compression - conclusions

In the previous sections we investigate the optimal scheme for both efficient and robust generation of
transform limited pulse. We arrive at the following conclusions:

e Pump temporal width (FWHM) shall be around 7ps.

e The signal transform limited case is not inferior to other chirped signal pulses, in terms of both
compression feasibility and conversion efficiency.

e While many solutions exist, all obeying Eg. (7.9), not all solutions exhibit good conversion
efficiency curve. If we buy 16mm of silicone, for every propagation distance before the
nonlinear crystal, fine solution for the compression scheme exist with propagation distance after
the nonlinear crystal in the range 6-10m. The expected energy conversion efficiency is between
25% to 15%.

The simulated generated compressed transform limited MIR pulse is presented:

Compressed Idler Intensity [GWf'cmzl

=0 N B oy o
T
i

time[fs]
x10° Compressed Idler Electric Field [V/m]

time|[fs]

Figure 29. Compressed generated MIR pulse.
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8. Adiabatic four-wave mixing frequency conversions

In recent years, much effort has been invested in developing schemes to efficiently convert broader and
broader optical spectra. Yet the common paradigm of nonlinear frequency conversion with constant
phase-matching includes a restrictive tradeoff between the conversion efficiency and its bandwidth.

The adiabatic frequency conversion concept, exhibited in the previous chapters, offered the
ability to sidestep efficiency-bandwidth trade-offs in nonlinear frequency conversion. The adiabatic
character of the conversion both dramatically increases the available bandwidth in these applications
while also ensuring high conversion efficiency. Application of this concept to three-wave mixing in
aperiodically poled quasi-phase-matched media, allowed the generation of phase and amplitude-
controlled, octave-spanning, coherent mid-IR light sources by means of adiabatic TWM processes.
Moreover, as presented in section (6), the amplitude and phase transferring qualities of adiabatic
frequency conversion allowed amplitude and phase tunability by pulse shaping prior to conversion,
allowing great flexibility for spectroscopic applications.

Though very promising, the traditional platforms for frequency conversion using TWM, such as
SFG, DFG, optical parametric amplification (OPA), and optical parametric oscillation (OPO), are limited to
devices based on specialized materials engineered and grown specifically for the application, whether
for ultrashort pulses or for single-frequency sources. In contrast, the ubiquitous presence of cubic
optical nonlinearities means that all devices employing light propagation have the capacity for frequency
conversion. Examples include optical amplifiers used for telecommunications, silicon and other
semiconductor waveguides used for photonics applications, and gas filled capillaries used for spectral
broadening of ultrashort pulses. In each of these technologies, four-wave mixing frequency conversion
(FWMFC) has been employed [31] [32] [33] [34], and four-wave mixing frequency converters have
appeared in other settings, such as highly nonlinear and photonic crystal fibers [35] [36]. Like all
nonlinear frequency conversion, application of four-wave mixing to the generation of broadband light
sources are limited in bandwidth, and are further limited by a trade-off between efficiency and
bandwidth.

In the following, we introduce the concept of adiabatic frequency conversion for four-wave
mixing, which we find broadly applicable to numerous J, nonlinear platforms. First, we present a
general propagation equation for four-wave mixing derived from Maxwell’s equations, capturing the full
frequency and time domain nonlinear pulse propagation effects for wave-guided interactions. Later on,

we present that the obtained equations can be simplified in several conditions to reveal the SU(2)

symmetry in FWM, which leads to an analogy with rapid adiabatic passage in two-level atomic systems.
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8.1 Pulsed four wave mixing wave- guided interactions

We describe the time dependent evolution of Four Wave Mixing in dielectrical waveguides via third

order susceptibility. We assume that only one waveguide mode is excited.

Tdol
27 2

—00

B8.1)E, = (A(z,0) + A'(2,-0) | E (%, y, 0)e /" e

E(z,0)

where A(z,w) is the spectral density of the electric field amplitude, (@) = is the frequency

on(w)

dependent electric field wavenumber, and E(X, Yy, ®) obeys Helmholtz Eq. (3.2). The subscript t in the

electric field written above denotes the electric field transverse dimension, perpendicular to the optical
axis.

Detailed derivation of the equations dictating the FWM frequency conversion process is presented in
appendix E. We summarize the derivation herein:

° Aﬂ(z, @) is the spectral density of a pulse centered around @, Where F€[1,2,3,4] and the

pulses central frequencies obey @, + @, = @, + ,.

o We assume that the electric field profile merely changes within the spectral envelope of the
pulses. In order words:

E(F,0)e (A, (2,0)+ A, (2,-0) ) = E(F,@,)e"*" (A, (z,0) + A, (2,-0))

e We define the amplitudes Cﬂ and Bﬂ
(8.2)C,(z,0—w,) = B,(z,w) = A,(z, w)e "
where f€][1,2,3,4].
. Cﬂ (z,t) is the Fourier transform of the electric field spectral density envelope centered at g

+Ood i(o—wp )t ~
(83)C,(z,t) = %e( e, (2,0-w,) = 3(Cy(2,0-w,))

0

e We define the following overlap integrals:

1 . L.
(8-4)7|nt:EJIdXdy(Es'E4E2'E1+E3'E2E4'E1+ 4 BBy 1)

©5) 1, =u, =3 [[ ey ([E [E [ +2IE £

where we denote E, =E,(F,@,).
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e The FWM equations in the frequency domain reads:

(8.6)

dA (z, »)
dz

dA, (2, @)

————=—lwé, y, €

dz

dA(z, w)

dz

dA,(z, )
dz

—lwe, y, e

—lwe, y, €

—lwe, y, e

ip(z,0)z

if(z,w)z

iB(z,0)z

ip(z,0)z

VA (2, @) A (2, 0)e PO A (2, —w)e 7 ]

i
2

oA (2, 0)e P * N (2,—w)e P * A (2, 0)e " +
A (2, 0)e P F NN (2,—w)e P x A (2, 0)e P 4

/J14A4(Z w)efiﬂ(z,w)z *AA*(Z _a))efiﬂ(z,a))z *Ai(Z a))efiﬂ(z’w)z

Ai(z,a))e—iﬂ(Z,w)z *Ai*(z’_w)e—iﬂ(z,(u)z *Al(z,a))e—iﬁ(z,a))z n

VA (2, 0)e PO * A (2, 0)e P * AN (2,-0)e PO +

@AZ(Z’a))e—iﬂ(Z,m)z *AZ*(Z,_a))efiﬂ(Z,a))Z *AZ(Z,w)e—iﬂ(z,m)z n

oA (2, 0)e PE % N (2,—)e O x A (2, 0)e O+
ﬂz,sAs(Zya))e_iﬁ(z'a))z * %*(Z, _a))e—iﬂ(Z,m)Z *AZ(L a))e—iﬂ(z,a))z n

ﬂ24A4(Z w)efiﬁ(z,a;)z *AA*(Z _a))efiﬁ(z,a))z *AZ(Z a))efi'g(z‘a’)z

1 A2, 0)e PEx A (7 p)e PEOT % AT (7 —g)e P L]

Has
2

ﬂ3,4A4(Z,a))e_iﬁ(Z’”)z * A (2,—w)e PEIT* A (2, w)e FEO? 4
,LﬁygAi(Z,Ct))e_iﬂ(z'w)z *Al*(z,_a))e—iﬂ(Z,w)Z *AS(Z, a))e—iﬂ(z,w)z i

1y 3A (2, @) PED* AT (2, —)e PE > A (2, 0)e )

AS(Z,a))e—iﬂ(Z,m)z *AI.*(Z,_a))e—iﬂ(Z,w)z *Aa(z,a))e—iﬂ(z,w)z n

VAR 0)e VA (2, 0)e VA (2,-w)e T 4
nt ) ) ,
%AAZ,G))GW(Z’M)Z *AA*(Z,_a))e—iﬂ(z,m)z *AA(Z,a))e—iﬂ(z,w)z n

/13,4A3(Z,a))e“ﬁ(z"")z *%*(Z’_w)e—iﬁ(z,a))z *A4(Z, a))e—iﬂ(z,w)z n
MAAI(Z’a))e—iﬁ(Z,a))Z *Al*(z’_w)e—iﬁ(Z,w)Z *A4(Z’a))e—iﬂ(z,w)z i

IUZAAZ(Z’a))e—iﬁ(z,w)z *Az*(z’_a))efiﬂ(z,w)z *A4(Z,a))e—i,b’(z,w)z

+00

where the symbol *' stands for convolution: f(@)*g(w) = I flo-0)g(w)dew".

—00
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e The FWM equations in the time domain reads:

(8.7)
—dCId(Zz,t) = -3 (Blo+0,2)C (2, 0+®)-i(0,8(0+®,17))(2-12,)C,(z,0+m,))
}/,ntC3(Z,t)C4(Z,t)C2*(Z,t)
~latsS (0)4‘0)1)3 [:“1,2 |C2(Z,t)|2 Tt |C3(th)|2 T Hig |C4(Z’t)|2 T & |C , t)| jC @
—dC;(Zz,t) =3 (B(o+0,,2)C, (2, 0+»,) -1 (0,8(0+®,,7))(21-12,)C,(2, 0+ 1))
7mCs(z,1)C, (Z1t)C1*(Z1t)
Tiaz (0% @,)3 (y12|c O + 11,5 [Co (2,1 + 115, |Cu (2 1) +ﬂ22 C, (z,1) ]C (z,t)
dcij(zz,t) =37 (Blo+ @, 1)Cy(2,0+ ;) ~i(0,8(0+ 0,,2)) (2~ 2, ) C3(2, 0+ @,))
7mC.(2,1)C,(z,1)C, (z,1)
_|80Z337 (0)+ 0)3)S (ﬂ1’3|cl(z,t)|2 +ﬂ213 |C2(Z,t)|2 +’u3'4 |C4(Z,t)|2 Hs3 |C (Z t)| JC (Z t)
_dcza(zz’t) = i3 (Blo+0,,2)Cy (2, 0+ ®,) ~i(0,f(0+®,,2))(2-2,)C,(2, 0+ ®,))

7mCi(2,1)C, (Z't)Cs*(Z’ t)

—ig, 13 (0+w,)T
o5 (04 0,) (ﬂ14|c @0 + 11, [Co (20 + 5, [Cy (2. 1)] +”“|C (z.1) jC (z,1)
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8.2.SU(2) symmetry in four wave mixing

It is presented in this section, that the adiabatic evolution frequency conversion characteristics exhibited
in the previous chapters for TWM interactions, can be also adopted for the case of FWM.

The equations dictating the interaction between four waves were displayed in the previous section,

Such that @ +®, =m, +®,, where @, ,,;, are the pulses central frequencies. Ignoring the

frequency dependence of the electric field transverse profile Ej (r, a)a), all mode overlaps degenerates

to the same value, denoted y :

e Hii =Vint :gﬂ‘ér dxdy -

Assuming that the pulses are continuous waves A, (z,w) = A 6 (w—w, ) where a €[1,2,3,4]yields:

(8.8)

‘fj—’j - —iwlsozsﬂ[e‘(ﬁz*m‘*“ZAAA; +§|AI2 A+ (|Af +Af +IA4|2)A&}
L iz y[e‘wl"’fﬂ“ZAsAA* eSIAL A (A +[Af +IA4|2)A2}
d_AZS :_iwgolsﬂ{ei(ﬂﬁmBﬂA)zp&AzA; +%|A3|2 A +(|A1|2 A +|A4|2)A3}
Bz A A AT A (A AT AT )A

We redefine the pulses notations according to the following scheme (1,2,3,4) - (Pump A,Signal, Idler,
Pump B).

Signal Idler

Pump A Pump B

Figure 30. Four wave mixing scheme. Signal pulse is being depleted as the idler pulse is being generated via the pump pulses.
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Applying the modified pulses notations to Eq. set (8.8), and assuming that the pump waves (both A and
B) are much stronger than the signal and idler waves|AB|2 > {|AS|2 ,|AI |2}, |AB|2 > {|AS|2 ,|A1 |2}

results in the following:

(89) % ~~2iyo, GIAAF +|AB|2JAA
‘L;AZB - iy, [%MBIZ +|AA|2j A,
‘L_Azﬁ — iy, (exp(—iAk 2) AAA +(|AL +|AB|2)A')
B o (exp(sink-2) A A, (] +IAT)A)

Eo X3 M

Where Ak:(ﬂs+ﬂA—ﬂ, —ﬂB)is the phase mismatch parameter and y = . Under the

assumption that the pump waves are much stronger than the signal and idler waves, one obtain that the
effect of four wave mixing for the pump waves results merely in phase modification, hence not affecting
to total power carried by the waves. In that case, the pump waves are therefore undepleted, and the
effect of FWM is significant only for the idler and signal waves.

The solution of Eq. set (8.9) for the pump waves can be easily deduced:
(8.10) A (2) = A,, exp(—iya)A (|AA|2 + 2|AB|2)2) = A, exp(—ig,2z)
A (2) = Ao (-0, (|G +2|A,[*)2) = g exp(-ida2)

where A, and Ay are the pump waves amplitudes at z=0.

Substitute Eq. set (8.10) into Eq. set (8.9) for the idler and signal waves results in the following:

©:11) S = —2iyo, (exp (i (8K + 6,4 ) 2) AuoA'a o + (AL +AS[) A )

dd;Azs = 2iyo, (exp(+i (AK -+, = ) 2) A Ag o Ano Jr(|AA|2 +|AB|2)A%)

We define the following normalized amplitudes:

(8.12) C _ Aexp(idz) c - A exp(ig;2)

B \ Y, |AA||AB| o LS |AA||AB|
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We continue with the derivation of CI :

) dC, dA exp(igz) exp(igz)

= +i¢|A| N T
dz dz \/;/a)l |AA||AB| Y, |AA||AB|

. . eXp(i¢|Z) . * 2 2
=1¢,C, = 2iyw, ——==|exp _|(Ak+¢A_¢B)'Z AnoA oA + |AA| +|AB| A
B el ) (f +1al)4)

(8.13

=i¢,C, —2iym, (|AA|2 +|AB|2)C| —2iyw, exp(—i(Ak+¢A—¢B \/7 Cs /7o |A ||AB exp I¢5S
A

=iC, (4 ~270, (AL +| Al )| ~i1C. 27 Ao A e 0P (<i (Ak + 6~y =i +4:)2)

Define the coupling strength & = 4y /@, @5 A, A'; yand arrive:

dc, . 2 2\\ - .
814) —*=ic, (¢, — 270, (|AW + Al ))—lcsgexp(—l(Ak+¢S—¢, +—¢s)2)

In the same manner one can obtain the evolution of CS :

dC, . 2 2\\ .
815) %= =iC, (4 ~ 270 |Af +[A[))-1C, % exp(i(k 4, -5, + 6~ )7)

we can define @, @ to simplify the equations obtained in the following manner:

(8.16) 4 — &) + P95 — 4 +AK =0
¢ —2yo, (|A (A

(4~ 200 |+ A ) = -
The solution is obtained:

(8.17) ¢ = _A?k+g|AA|2 (20, — @, + 20, + 20 )+%|A3|2 (05 =20, + 20, + 20 )

&, =+A7k+%|AA|2(—2wB +w, +20, +2w5)+g|AB|2(—a)B + 20, + 20, + 205 )
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The parameter ¢ is given by:

(8.18) &= —( s — 2y (|AA|2 +|AB|2)) -

M 1n (204 - 0020 -20,)- LA (0, 20,420, 20,
Ak oy,

=+ TS+ R AT

The coupled equations posses SU(2) symmetry, written in matrix form

C i(-2 C
(819) i | :_L *5 K |
dz\ Cq 2\ &k +2& )\ Cq
Recall the evolution of TWM in the undepleted pump approximation

o) 5l o)
(8.20) —| *|=—=| .
dz\C,)” 2\« +ak)\c,

The effective phase mismatch parameter is therefore given by

(8.21) 2£ = Ak —y, | A" + 5 | Ay

Which can also be denoted as Ak, =2&, where every wave vector is added the corresponding
SPM/XPM term:

(8-22) Ak :(:Bs +ﬂA_ﬂl _ﬁB)

b b IFIAL) B gz SIAT AT

pus v oGS AL B gz (A 4IAT)

which indeed yields the effective phase mismatch 2&:

Ak —>Ak+;/|AA|2(2a)S +m, -2, —Za)B)+}/|AB|2(2a)S +20, — 20, — 0y ) =
AR = Ak =y, | A + yeog | Ay

To conclude, we obtained SU(2) symmetry
C i (—Ak, K C
(8.23) L &1 | o L[ T !
dz\ Cq 2\ & +Akg | C
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with the following definitions:

Ak = Ak — ;/a)A|A| +7/a)B|AB| Kk =4y o w5 A Ay

A,exp(+|A2kz+||A| (- 2a)8+a)A+2a),+2a)s)z+|—|AB| (- a)B+2coA+2a)l+2a)5)zj

C =
V7o A A
Asexp[ —kz+|—|A| (205 — @, + 20, + 20 z+|—|AB| 260A+2a),+2a>5)2)
CS

\/7“’8 Al A

with the Hamiltonian given in the form Eqg. (8.23), the normal adiabatic criteria can be deduced. It is
therefore presented that the adiabatic evolution frequency conversion characteristics exhibited in the
previous chapters for TWM interactions, can be also adopted for the case of FWM.
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9, Future research

In the previous chapters, we presented several topics of research, encompassing areas yet to be fully
researched:

1. Theoretical Adiabatic Evolution criteria in the ultrashort regime

While the condition for an adiabatic evolution exist for the case of nonlinear TWM interactions
[25] in the CW regime, adiabatic criteria evolution for ultrashort pulses is still absent. The
Hamiltonian presented in Ref. [25] shall be generalized to fit to wideband pulses, towards
achieving a general adiabatic criteria.

2. DFG pulse compression realization

The DFG compression scheme presented in section (7) is to be experimentally validated for the
Generation of MIR ultrashort pulse.

3. Experimental validation of adiabatic FWM using silicon photonics

In contrary to the case of TWM interactions where we facilitated the phase mismatch
compensation by adiabatically changing the signs of the second order nonlinear susceptibility,
we wish to experimentally exhibit the concept of adiabatic four wave mixing by introducing
physical deformations to a silicone waveguide, thus providing the missing momenta by the

spatial frequencies introduced by the electric field modal overlap 7, . (Eq. (8.4))

Vit (Z) = Vit (1+ £cos(K, (z)z))

Periodic frequency —
conversion waveguide = iy T
IS = = L S h
S ~\__“___\2

LY T

- AD =
| = ba
Adiabatic frequency . N .
conversion waveguide g — N N
e o
[~ . N
-
e
L

Figure 31. Adiabatic FWM in Silicon Photonics

The design of an optical waveguide tailored to specific application, using the equations
introduced in section (8), and the experimental validation of the obtained set of equations is to
done ahead.
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10. Appendixes
10.1 Appendix A - Spectral domain modeling: derivation and formulation

10.1.1 Spectral modeling derivation

We derive the equations of an input pulse being inserted into a media with chirped second order
nonlinear susceptibility. Denoting the fields amplitudes with A , where j denotes the frequency ®; , the

electric field can be written as:

ADE=Y A@e"" ™ F(xyf

Q.
where kj is the electric field wave number, given by K; = —L n(w;), z is the optical axis of the crystal,
C

Af is the simulation resolution in the frequency domain, and F (X, Y) is the electric field mode profile

obeying Helmholtz equation:

(A.2) V2 F (X, y)+UwT’n) —k* [F(x,y)=0.

The total electric field in equation (A.1) also obeys Helmholtz equation with nonlinear polarization:

n? 0°E o°P
AIVE=G o7 o

Continue with writing the nonlinear polarization term contributing to the SFG term:
(A4)P, = 230)(2E2 = 250)(22 A (2)A (Z)ei(wjt_ij)ei(W_ka)FZ(X' y) (Af )2
ik

The left side of equation (A.3) is:

VE=(V7?+0,2) Y A @)e IR (x y)af = 3T A @) IV R (x, y)af + 30,2 (A,. ) ei(”’jt_ka))F (x, y)Af

V2E = z Aj (Z) ei(wjtfka) ka _(wTjn] F(X, y)Af n Zazz (Aj (Z) ei(wjtka))lz (X, y)Af
i j

Eq.(A.2)
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Applying the following slowly amplitude approximation:

AA (@) o)
dz

(A() “"“) ~ —k 2A, (2) € - 2ik.

yields:

V’E = ZA(z)e ortky2) { jz—[wcn] JF(X y)Af +Z( k%A, (2)e ) F(x, y)Af)

VE=- Z[zk A, ““F(x,ywj ZA(z)[ ] eI (x, y)af

J

v%z:-Z[zk Ad() (o) oy, )AfJ [n)aZZA()e“’tkzF(xy)Af

J

(A.5)V’E — ( j = —Z(Zk WA (@) o) F(x,y)AfJ

Substitute Eq. (A.5) into the left side of Eq. (A.3), together with the insertion of Eq. (A.4) into the right

side of Eq. (A.3) yields:

d o (Z A (DA (2)e" IR (x, y) (af )Zj
_Z(Zlkm 'Rdﬂ—z(z)ei(wmtkmz) F(X, y)Af j _ 280)(2#0 jk

m

atZ
Multiplying both sides of the above equation with F'(x,y) and integrating over the cross section results

in the following:

‘Z(Zikm%ei(w_k " j —ZgoﬂoZzYZ(co v ) A (DA (2) €T g RAf
JIF oI F(x, y)dxdy
I|F(x, y)|2 dxdy

where Y =

Using the orthogonally of planar waves one can compare time domain spectral waves:
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, =(a)j+a)k)

2k, Mei(“’mt_k ’ =—280,L10)(2Y2(0) +a)k) A (Z)/—\k(z)e okiz)gs (“’kt_k*Z)S(a)j +o, —a)m)Af
z -
k. d’*d“(z) 2122m YZA(Z)/—\k(z)e i) 5o, + o — a0, ) Af
z C

(A.6) dp‘gz(z) _i 752‘521‘2"'“ YY A DA (2)e e 5 (@0, + 0, -0

m

) Af

m

The equations describing the SFG contribution to the fields amplitude were derived. The
electromagnetic field intensity [W] is given by:

n 2 2 n 2 2 n 2
P= ﬂ dxdy2—%|F(x, y)|' |A@)| Af :2—770|A(z)| Af jj IF(x,y)| dxdy:Z—%|A(z)| Af

2

.
We wish to normalize Eq. (A.6) such that 2 = Af - will be in ﬂ units. Define B(z) = YA(2):
Mo m*

B(z A(z
| ( )| Af —Y2| ( )| Af[ -] as we wish to obtain.

21, 1 20

n m N

%/_/
w

Rewriting Eq. set (A.6) in terms of B(z) results in the following:

0|Bm(2)£=ich(Z)czom2 ry 2 B;(2) B (2) ji(ku-t):
z Y ke Y Y

é‘(a)j + @, —a)m)Af

A7) Bald)_; 2D’
z k ¢

m

> B,(2)B, )" 5 (0, + 0, ~ o, ) Af
j.k

The familiar equation for SFG is introduced. The equation for DFG can now be easily deduced:

dB,(2) .z, (Do, . =i(k;—kn k)2
(Ag) =nE—ife 2 %Bj(z)Bk(z)e Kl (@, + @, -, ) AF

m
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10.1.2 Efficient equations formulation for difference frequency generation

We present efficient formulation of Eqg. set (A.7) and (A.8) for the case of DFG. Assume we have two

pulses, as presented below, denoted as “Signal” and “Pump”. The interaction between the two pulses

generates a third pulse, denoted as “Idler”.

Idler Pump Signal

|

We start with defining the amplitudes:

. Bs ( fj) - Signal amplitudes defined in the range [fsmin, fsmax] . The grid is equally spaced with

spacing Af . | denotes ascending frequencies on the signal grid: fs(j) = fsmin +(j —1)Af .

° Bp(fj) - Pump amplitudes defined in some range: [fpmin, fpmax] . The grid is equally spaced

with the same spacing Af mentioned above . Subscript | denotes descending frequencies on

the pump grid fp(j) = fpmax —( J —1)Af .

. BI (fj) - The idler frequencies will be defined using the pump and signal grids.

fm :( fmn— fpmax), f. e =(fsmaX - fpmm) . The grid is equally spaced with the same

spacing Af mentioned above Pay attention that every DFG possible between the signal and the

pump exists on the above grid. Subscript | denotes ascending frequencies on the idler grid:

f(3)=(f,"" = £,7)+(j-1)Af .
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f max f min

Given that the signal grid contains N points: T = ( N, —l), and that the pump grid contains

f max f min
N p points: % = ( N, —1) , The idler grid will contain:

fimax _ fimin ( fsmax . fpmin)_( .I:Smin _ fpmax) ( fsmax . fsmin)+( fpmax . fpmin)

Af Af Af

fimax_ fimin
T:(Ns—l)+(Np—1)=Ni—1:>

(A.9) N, =N, +N, -1

Let’s examine the energy conservation condition fSignal = fldIer + fPump :

£(k) = f,™ —(k-1)A
f,(m) = f,™" +(m—1)Af

f () =(f" = f,7)+(j-
f

=

- fldler + f

Signal Pump

£ (ML) AF = (£, — £ )+ (j—1) Af + £ — (k—1) Af
™" +(m=1)Af = ™ +(j—1)Af +(1-k)Af
j=m+k-1
We observe, that by using the grids proposed, 5(a)|j+mpk_a)sm):§(m+k—j—1), which

dramatically simplifies the equations. Continue with deriving the simplified equations by inserting the

amplitudes defined above. We start with the equations defining the idler pulse, Eq. (A.8).

dB, (z, f. ). Ns N :
'(dz ) _ ZZ( )”J > Bz £,)B (2 f)e T 5 (0] + 0 — ") Af
m=1 k=1
dB vf' 2 Ns Np * —i(ky—k;—k )z .
'sz ) _ "2(2)“)' 3> By(z, £,)B % (2 f)e I s(mak - 1) Af
A m=1 k=1

dB, (z, fj) i Zz(z)a)j
dz k.c?

]

z BS (Z’ f1+j—k)B*|:~ (Z, fk) e_i(k“j’k_kj_kk)zAf
k
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dB (Z, f) ZZ(Z)(O +|kz k1+1k (ke )z
Idz ! e ZB (z.f 08 B o (z, f)e

! F k) a(k)

this sum is a convolution. The equations describing the pump are presented:

dB,(z f;) _ 12(2)60

A.10
( ) dz k c?

e (Bs (2, fm)e'jkmz)*((BP(Z’ fk)e_jkkz)*)Af

conv[BS(z,fm)e’jk"‘z,(Bp(z,fk)e’jkkz) )

Continue with defining the pump equations:

2 NI Ns ) )
dB, (2, fi) _ )‘2(2)% >3 B,(z, f,)B,(z, fj)e_'(k”_k"_kk)zé(a),‘+wpk—a)sm)Af

dz j=1 m=1
2 NI Ns )
dBP((jZZ’ f) _ Zz(z)a’k 3> B(z £,)B, (2 f)e N s(mak - j-1)Af
j=1 m=1
dBy(z, f) . 1x.(Do" «. 2\ { v
(a1 et k)=';‘2é 2 et 3 (Bs(2, f)e ™) (B, (2, fy i i)e ") af
k m

f(m) f (m+k-1)

now we got correlation function instead of convolution

For brevity we define S, = Bg(z, fm)e_ikmz, | =B, (z,f )e™*. For the calculation of the pump

amplitudes it is therefore required to calculate C, =Z:Sm|m+k71 Af for k=1: Np, where S_ contains
m

Ns samples, and | contains Ni samples. When Matlab R2013a calculates correlation using xcorr

function, it zero-pad the shortest input (hence the signal):

f(m)=xcorr([$,S,S;...8, LI 41 ,15...1 ,]):
S, S, S;...S,, 000...0

[N —
N P Zeros
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m:Ns |1|2 INp—l |Np |Np+1 ...... |NI
* * * * * *
* * * * *
m= N| |1 I2 . INS INS+1 INi

The rectangles highlights the elements that are being multiplied for each element of the correlation

vector. For example, the first element in the correlation vector is SllN_*,the second term is

(SllNi—l* "‘Slei*) and so forth. Pay attentionto m= N :

Z Sm I m+Np71*Af = Z( BS (Z, fm) eiikmz )( BI (Z' fm+k71) e*ikmk-lz )* Af
i " k=N,
which is the term that contributes to k = N o in Eq. set (3.11). Pay attention to M= N. :
Z S, | “Af = Z(Bs (z, f )e )(B| (2, )e s ) Af
m

m k=1

which is the term that contributes to k = Np in Eq. set (3.11).

In conclude ,the terms that contributes to (k =1:N p) are the flipped xcorr elements between

(NS . Ni ) . The equations describing the pump pulse were derived:

a8,z 1) _. (e’
- 2

A.12
(A-12) dz k.C

e (B (z, f,)e ™) (B, (z, f,)e™" ) af

flip(xcorr(Bs (z, )& ¥ B, (z, ;)" )y )
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The equations describing the signal pulse can be deduced in the same manner:

dB,(z, f,) _ ZZ(Z)w Rebs

- > Y B.(z, f)B, (2 f)e " 5 (o) + @k )" At
j=1 k=1
dB (Z’ fm) ZZ(Z)CO pkn? 3 & ik, Z —ikjz :
s s e ;;(B (z, f)e™ )(B(z,f ye ™ ) (m+k—j—1)Af

st( ’fm) P 2( ) |k z ik, z [ Y
dzz =|ZkZC§’ Z(B (2, 1,)€7") (B (2, ) € "o AT

m

a1y Blbla) 2000 g (5, 1) 7)o (B, 1 e )

m

flip (xcorr(Bp (2, fi e ™ B, (2, ;)¢ ™ T)y )

The total set of formulated equations is presented:

B (2.1) 72,00

+ika —jknZz Y% - Jkz )
(A1) — " (B, (z, T,)e ) ((BP(Z, f)e ))Af
dB (Z,f ) Z ), ik, z —ik.z —ik.z
Cn Zﬁi e (B, (2. 1,)e ™) OB, (2, )™ ) af
dB Z, fm - Z a)mz ik.z —ik, z —ik:z *
sgz ):.Zzlimiz e (B, (z, T,)e ™ )@((Bl(z,f.)e ) )Af
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10.2 Appendix B- Time domain modeling derivation

Start with Maxwell equations in the presence of nonlinear polarization term:

- 0B oH
(8.4 o Mt
- 5 0(e,E+P +P 65E+51E+F3
(B.2)vxH =P _ (5B +P +Pu) _9(&E +2 NL)D
ot ot ot
. (& +x)E+R d(&,n°E+P
(B3)VxH = (50 2) NL): (2 )
ot ot
Apply curl on Eq. (B.1):
- @(VXH) 0 8(gon2I§+I3NL)
B4) Vx|VxE|=—y———~ i
(B.4) Vx(VxE)=-u ot ,Uat{ p
Eq(B.3)
2c 2D
(B.5) ~VE+V(V-E)=- gyt Lo - T
’E Py

(B.6) V’E = +ug,n’ e +u pve

We would like to make some of the calculations in the frequency domain:

_on(w)

< i| wt —i a)t—L(w)z
oo™ T )
0 T

1 +o0 dw w” i(a,t_(onéa))zj . 12-do' . , +i(mt_(unc(a))zj

Hence, the Fourier transform of the electromagnetic field A(z,t) is given by:
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(B.8) 3(E(z,1)=E(z,0) = %[A(z, o)+ A*(z,-w)]e‘méw)z

>0 <0

YE(z,0)

o
—ifn(ﬁ))z —i—n(®)z

A (z,—w)e © A(z,w)e °

> )

Figure 32. Frequency domain field presentation

Averaging over the transverse dimensions I dxdy, and applying Fourier transform to Eq. (B.6) yields:
(B.9) 0,°E(z, ®) = —us,n*0’E(z, w) — P, (z, a))\ﬂ( on = — B (0)E(z, 0) — uw*P (2, w)

Substitute Eq. (B.7) into Eq. (B.8):

822[%(5\(2,@% A*(z,—a))}e'ﬂ‘“’)zj g(aﬂ\@ W - B (0)E(2,0)

>0 <0
/Im Becauseof SlowlyVarying Envelope
—ip(®) (52'5\(2, w)+0,A(z, _w))e—immz

(B.10) 8,%E(z, w) + f*(w)E(z, ) = —iﬂ(a))(ﬁz,&(z, w)+0,A(z, _a)))efiﬁ'(w)z
Substitute Eq. (B.10) into Eqg. (B.9) yields:

(B.11) —iﬁ(w)(@z,&(z,a))+82,5\*(z,—a)))e’iﬁ(“’)z = —uw*P, (2, ®)

It is time to write down the nonlinear polarization term, assuming the electric field is polarized along X:

P (1) =2¢&,7(2)E*(z,t) =
(B.12) P, (@) = 2¢,#(2)E(z, w) *E(z, )

Substitute Eq. (B.12) into Eq. (B.11):
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-i8(w)(0,A(z,0) +0,A (2,~w) )& ") = —ew* 26, 4 (2)E(2, 0) *E(2, 0) =

(0,A(z,0)+0,A (2,~w) e " = -2i % E(z,0)*E(z, 0) =

— | x(2)
(0,A(z,0)+0,A"(2,~w) e " = -2i @W E(z,0)*E(z, 0) =
C

(B.13) (0,A(z,0) +0,A"(z,~w) e /" = -2i @22 E(z,0)*E(z, ®)
¢ n(w)

The electromagnetic field is composed of three pulses: the signal, the pump and the idler. We therefore

write:

0,A(z,0)+0,A (2,~m))e " +

aZAp(Z,co)+62Ap*(z,_a,))e—iﬂ(w)z+ _

azAc(Z,a))+8ZA*(z,_w))e—iﬂ<w>z N

A(z,0)+A (2,-0))e " + | |(A(z,0)+A (2,-0))e " +

A (z,0)+ A (2,-0))e "+ |*| (A (z,0)+ A (2,-0) )" +
(

AG o)+ A @ -0)e " + | | (AZ0)+A'(2,-0))e " +

(B.14)

__jo2@)
2¢ n(w)

[
(
[
[
(
{

We start with writing the equations for the signal: @; = @, + @, . By looking on the spectral shape of the

convolved signals one deduces:

(B.15) 0,A (2, w)e /@ = i %%( Az o)e O A (2,0)e PO

Figure 33. The generated idler. Pictorial view of the convolution term in equation (B.15).
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ang(z’w)e—iﬂ(w)z — az (AS(Z,C())e_iﬂ(m)Z)-I- iﬂ(a))As(z,a))e‘w(‘”)z —

(816) 62 (A%(Z’ w)e—iﬂ(w)2)+ I,B(a))(Ag(Z, a))e—iﬁ’((o)z) (::) nZ(( ;(A(Z a))e Iﬂ(a))z) (Ap (Z, a))e‘iﬂ(“’)z)

We define A,(z,®) = A,(z, w)e P
(B.17) Aﬁ*(z,—a)) = A (2 -@)e " = A (2, )
We can therefore write:

(B.18) 8,A (2, 0) +if(0) A (z,0) =i 2 ;‘(( ;A(z 0)* A (2, )

The equations describing the rest of the pulses can be deduced in the same manner, yielding the

following set of equations:

(B.19) 0,A (2, 0) +iB(0) A (2,0) - ””‘(( ;A(Z 0)* A (2,0)

A (z.0)+iB()A,(2,0) = H”((Z; A (z,0)* A (z,-)

8, (2, 0)+if(@)A(2,0) = "(( ;/x(z 0)* A (2,-0)
One can define:

io ~1{( X Tdo - i Tdw —if(0)7 pie
(B.20) €' A, (z,0) =37 (A, (2,0)) = jZAﬁ(z,w)e ‘= jzAﬂ(z,w)e plolgle

Applying complex conjugate on the equation above:

'”’ﬁtA (z,t) = I—A (z, w)e"F (g™ =

0'=—o

—lwpt _ +Hip(- a))z o't uw Na-if(@)zhi0"t _ ~-1( A * _
AS(z,t)= j—A (z,-0")e LZ”A (2,-0)e e =37 (A (2,~0))

(B.21) e'A (z,t) =37 (A, (2,~0))
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Define: (B.22) C,(z,w) = T Aﬂ(z,t)e_i”’tdt =
one can obtain:

(B.23) s(e‘“’ﬂ‘Aﬁ(z,t)) j e A (z,t)e " dt = j A,(z,t)e” o “’/’)dtzcﬂ(z,w—wﬂ)
which implies:

(B.24) A, (2, ) =C,(z,0— ;)

Let’s look on the first equation in Eq. set (B.19):

0. A 2.0)+p@)A (20) =1 2L A (2,0)* A (2.0)

2(2)
n(w)

Combine with Eq. (B.24):

(B.25) 8,C,(z, 0~ ,) +i(@)C. (2,00 w)_—‘”(z)C(zw 0)*C,(z,0-0,) =

n(w)
C.(2,0) +iB(0+®,)C,(2,0) =~ ——2_ 4(2)(C,(z,0— ) *C,(2,0-,))
cn(w+ w,) @+
We simplify the equation using the following identity:
(B.26) I (C(z,0-m,))=€""C(z,)
S_l(C(Z,a)—a) )):Td—C(z o—w,)e" = '””ITd C(z,o-w )e -
“ s 2 “ s 2 / ‘
(0*(,0/}:(4)

=" j —C(z et ="“r'C(z,1)
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Inverse transform Eq. (B.25):
(B.27) 37 (Left Side) =0,37'C,(z,0) +i3™ (B(w+ »,)C,(2,®) ) =
37 (Left Side) = 0,C,(z,t) +i3™ ( B0+ »,)IC, (z,1) )

S’l(Ci(Z,a)—a)i)*Cp(Z,a)—a)p))

—platyt (Ci (z,0— Cl)i)*cp(zl = a)p)) -
€q.B26 ’

=e"3C(z,0-0)I'C (z,0-w,) =

_ e*ia’stei“}lt ia)ptsflci (Z, a))S*le (Z, (0)

(l)+(l)s

O5=0, +0,

= 3C,(2,0)I'C, (2,0) = C,(z,1)C, (2,1)

Eq. (B.27) in the time reads:

o+ o,

(B.28) (2 +ig™ (ﬂ(w+ @,)3C,(z,1) ) =—iy(2)3" (—
oz n(o+w,)c

S(Ci(z,ocp(z,t))j

The same manipulation can be done one for the pump and idler pulses, yielding the above set of

equations:
©.29) T4 is (po+0)3C,20) =-ix@) &S(Q(M)%(Z-t))}
7 n(w+w,)c
D L5 o+ 0,)3C, (20 =-i22)5 ﬂS(Cs(z,UQYZ’t))J
oz n(w+a,)c
—acia(zz’t)+i3‘1(ﬂ(w+wi)5ci(z,t)) =—-iy()3* —n(ZiZ)CS(Cs(zyt)Cp*(Z’t))}
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10.3 Appendix C- Flux energy equation: derivation and validation

10.3.1 The energy flux equation derivation
Start with Maxwell equation:

~. 0B oH

cyvxE=_B__,H

(€. a a
c2)vxh-2
ot

where Dis givenby D=g,E+P_+P, =&E+&xE+Py = ¢, (1+;()|§

We continue with the calculation of the energy flux density given by:

1 1 = 1

(€30, = (E-D+B-H)=Z(E-(s€+P, )+ 4l H) = (o€ E+uH -H + B, E)

2

u, o0(1l; = = = 5 = = E - oH - 19(Py-
¢=—|=(eE-E+yH-H+P, -E)|=¢— E+y—H+=———-—=
at 8t(2<8 # L )j a a2 a
From Eq. (C.2) one deduces:
. 0(¢E+P
VxH = ( NL)=5E+5PNL
ot ot 0
4y e L _vur-Pu
0 ot
From Eq. (C.1) one deduces:
oH
CHSu—=-VxE
(CH)u o x
Incorporation of Eq. (C.4) and Eq. (C.5) into Eq. (C.3) yields the following:
) .. . 190(P,-E
(C.6) Yo _| v -Lu -E+(—V><E)-H+1M
ot ot 2 ot
o(P,-E) _ B Lo
1 (P )—E-aPNL+E VxH-VxE-H
2 ot ot
o(P, -E L . 10(P,-E 5
:E (NL ) E.aPNL V-(EXH)Z—V S+1 (NL ) .6PN|_
2 ot ot ot ot
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We substitute the nonlinear polarization term into the equations, assuming that the nonlinear
polarization is in the direction of the electromagnetic field:

F_SNL =€0}((Z)E2(Z,t)|§
~ — — aISNL . .
Theterms P, -E and E S in Eq. (C.6) take the following form:

(C-7) ISNL E= 507((2) E3(Z’t)

- P _ OE(z,t
E- NL:Zeoz(Z)EZ(Z,t)Q

t ot

o))

Incorporation of Eq. (C.7) into Eq. (C.6) yields the following:

. 10(P,-E) . sp . 10(e,x(2)E%(z,t -
oo 19RCE) LR o 19(ar@E ))_ZgOZ(Z)EZ(Z’t)aE(Z,t):>
ot 2 ot ot 2 ot ot
ou, = 3 = OE(z,1) = OE(z,1)
ot :_V'SJFE&O}((Z)EZ(ZJ) p —2¢,7(2)E?(z,t) R

ou L1 L, OE(z1)
C.8) —=-V-S—=¢ 7(2)E*(z,t

As the energy flow of the frequency generation process is in the z- direction, we are left only with the z-

derivative of the poynting vector: V- S = 5Séz,t)
Z
ou, OS(zt) _ 1 BN ()
C9 —+ === Z)E“(z,t
(C.9) ot oz 2‘907(( JE“(z,1) ot
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10.3.2 The energy conservation rule

Assume the electric field to be polarized along the X direction, and recall the electromagnetic field

phasor defined in Eq. (B.8):

+00 wn(a))
(C.10)E, (z,t) = OI—“’E(A(z w)+ A'(z, —a))) ¢ giet
21 2

—00

S B = oH
We need to calculate the pointing vector S = E x H . Using faraday law V x E = —,u—tone obtain:

(Cll)H(zt)_——j(vXE) :_—joazEX,o :——IazEdty

Substitute Eq. (C.10) into Eq. (C.11):

0

(C.12)Hy(z,t):—%JazExdb—%ja [.[2_6’)1 A(z,0)+ A (z,—- )) g iB@)z- mt)]dt:
_2i J [Tdf (0.A(Z, ) +0,A(z,~) Je ) ~if(w) Az, @) + A (2, —w))e“ﬂww]dt -
—jdf( (0.A(z,0) +0,A (z,~w) )+ plo )(A(z )+ A'(z, a)))j ployz-at)

w

As pointed in section (3.5), the pointing vector S=ExH is calculated without taking into account the
nonlinear polarization contribution. The nonlinear contribution term induced by the derivatives

0,A(z,w)and 0,A’(z,~w) is therefore dismissed. We are left with the following magnetic field:
(C.13)H,(z,1) :i J' df M(A(Z,a}) i A*(Z’_a)))e—i(ﬁ(a))z—(ut)
2u )

The pointing vector is therefore given by:

S=ExH=EH,2= [ df %(A(z,a})JrA*(z —))e Ve jdf ﬂ(w)(A(z 0)+ A (2,-w))e VO

_ w
(C.14) S, :iTTdfdf g PNl (A7, ) + A (2,-0) )- plo )(A(z »')+ A (2,-0")
,u_w_w o'
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w
The units of S are — . Inorder to calculate the energy density of the electromagnetic field we
m

integrate over time:

(C.15)E, (2) =TSZ(z,t)dt =

1 +00 +90 +00

—defdf g WO N (A(Z, ) + A'(2,~w))- plo )(A(za))+A(z )
Ap s, 2 =,

1 T o+e'
Recalling that2— I gl@lgt = 5(a)+a)') , one obtains:
V4

(C.16)

Ed(z)_ Hd A(z ®)+ A (2,-0))e™ 'B(‘")*ﬁ(“’))5(a)+a)')M(A(z,w‘)+A*(z,—a)'))I
1) 0'=—0

—00 —00

E(2)= E j g—:(A(z, @)+ A (2,~w))e O .—‘ﬂg“’) (A(z~0)+A'(z,0))

(I )

Recall that #(w) = , hence plo) =— @) , 50 Eq. (C.16) reads:
@

(0]

(C.17) Ed(z)=i+j:df(A(z,w)+A*(z,—a)))-%(A(z,—w)JrA*(z,a)))
A(z, ) A (2,~0) = A2, ») A(Z,~®) =0 because A(Z,) exist only for @ >0.

(C.18)E,(2) =$Tdf (A(z, )+ A*(z,_w)).@(A(z,—wn A (z,0))= Tdf %“ZQA(L@)F +|A(z,—a))|z)

|A(Z, —a))| =

_m M 2_”c M 2_“O on(w) z_JrOO M 2
(C.19)E,(2) = !df 4aw2|A(z,a))| _ldf ™ |A(z, )| _ldf 2uic |A(z, )| _ldf 20 |A(z, )|

HC= U ! - &£ =1, , hence:
\ Hég o

(C.20)E,*°(z) = !df "2(—;")|A(z,a;)|2

0
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The total electromagnetic flux is therefore given by:
+00 +00 n(a)) B s B 2 B 2
(C21) [ S,(z,t)dt= | df ?(\A (z,0) +|Az.0) +|A(z,0) )
S 0 0
In the following it is demonstrated that the following energy term is conserved through the propagation:

E,(2) = jdf ”(”)(\A(z o) +|A, @0 +|Az.0) )

In other words_dEd @) =0.
dz
Ao dA@e)|) dAcze)l|
+o Z,@ Z,@ Z,@
(c.22) 352 _ | f P n(w) + n(w) + n(w)
dz o 2HC dz dz dz

The equations describing the propagation are (Eq. set. (3.13)):

0.A2.0)+if@)A (2.0) = 2D A (2,00 A, (2.0)

n(w)
2(2) %
(z a))+|ﬂ(a))A (z,0) = & ¢ (o )&(z L0)* A" (z,-o)
aA(z,w>+iﬂ(w)A<z,w>=—i9ﬁ&<z,w>*l\;(z,—w>
¢ n(w)

For ease we write from now on: Aﬁ(z, w) = B(z,w), hence:
(C.23)0,5(z, w)+ip(@)S(z,w) = —IE#I(Z,a})*P(Z,a))
aZP(z,a))+iﬁ(m)P(z,w)=—i9@3(z,a))*|*(z,—w)
¢ n(w)

0,1(z,0) +iB(@)1 (2, 0) = —i 2 XD (2. 0)*P* (2,-)
¢ n(w)
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Start with the Pump:

(C.24)
d |P(Z,a))| n(a)) _ d (P(Z,a))P (Z,a))) n(a)) _ |:dP(Z,CU) P*(z,a)) n dP*(Zaa)) P(Z,a))j|n(a)) =
dz dz dz z

(—i Qﬁs(z,a))*|*(z,—a))—iﬁ(a))P(Z,a))J P'(z,0) +
¢ n(w)

(+i o x(2) S (2, 0)* 1 (2,~) —i,B(a))P*(z,a))j P(z, )

n(w) =
¢ n(w)

= —i%;{(z)(S(z,a})*I*(z,—a))P*(z,a))—S*(z,a))* I (z,—a))P(z,a)))

By repeating the same procedure to both the signal and idler pulses one obtain:

o 1(z,0)*P(z,0)S"(z,w) -1 (z,®) * P’ (2, 0)S(z, ) +
j 0| S(z,0)*1"(2,-0)P"(z,0) - S"(z,0)* 1 (2,-®)P(2, ) + |dw
® |S(z,0)*P (z,-0)1"(z,0) - S"(z, 0) * P(z,-0)1 (2, ®)

(C25) dEd (Z) — _il(zz)
dz 4druc

All the signals written here exist only for @ > 0 so the lower bound can be stretched:

_ . 1(z,0)*P(z,0)S (z,®) -1 (2, 0)* P (z,0)S(z, w) +
(C.26) %z%@ I | S(z,0)*1"(2,-0)P (z,0) - S (2, 0)* 1 (2,-0)P(z, ) + |dw
e S(z,0)*P’(z,-w)1"(z,0) - S (z,0) *P(z,-0) 1 (2, ®)

Define
+00

(C.27) == J- a)(l(z,a))*P(z,a))S*(z,a)) —-S"(z,0)* (2, -0)P(z, w) —S*(Z,a))*P(Z,—a))I(Z,a)))da)

—00

Therefore Eq. (C.26) can be written as:

(C28) dEd (Z) — _il(zz) (E _
dz 4muc

(1]

)
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Let’s start:

TT”I(Z’wI)P(Z’w_a")S*(Z,CO)da)da)' =

O-0'=0"

(C.29) Ta)l (z,0)*P(z,0)S (2, w)dw =

—00 —00

+00 +00

= _[ I (co'+ a)) 1(z,0)P(z,0")S (z2,0"+ ®")dwdw' =

—00 —00

:JIa)'I(z,a)')P(z,a)")S*(z,a)"+a)')da)da)'+I Ia)"I(z,a)')P(Z,a)")S*(z,a)"+a)')da)da)'
—00 —0 , —00 —00 .
Continue with term A:
(C30) | [@'I(z.0)P(2,0"8 (2.0"+@)dadw| = [ ['I(2,0)P(2,-0)S"(2,0'-0)dodo' =
= [0'1(2,0)P(2,-0)*S"(2,0)|,  do'= [0l (2,0)P(z,-0)*S(z,0)dw
Term B:
(C.31) j ja)"|(z,w')P(z,co")s*(z,m"m')dmdw' :J-Ia)"P(z,a)")I(z,—co)S*(Z,a)"—a))da)da)':

= Ta) P(z,0") 1(z,-»)*S"(z, a))‘w:w do" =TwP(Z,a))I (z,-0)*S (z, w)d @

Substituting Eq. (C.30) and Eq. (C.31) into Eq. (C.29) yields:

(C.SZ)Ta)I (z,0)*P(z,0)S (z,0)dw = +jﬁoa)l (z,)P(z,-w)*S"(z, a))da)+TwP(z, o)l (z2,-0)*S" (2, w)dw

= T(a)l (z,0)*P(z,0)S" (2, 0) — 0l (2, ®)P(z, ) *S" (2, ®) — wP(z, ®)| (z,—a))*S*(z,a)))da): 0=

—00

=0

[1]

(11

“)=0.

In the following we proved that = = 0, hence & (2) _ _il(z)(E—
dz 47uc’
2
= g [d]A (20 d|A (2, o) d|A(z, o)
dEd(z):J- df | d]A,(z.0)| ”“’”MMQHM”(@ 0
7 Z

dz o 2HC dz

(C.33)
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10.4 Appendix D- DFG compression scheme optimization

10.4.1 DFG compression feasibility dependence with signal chirp

We recall @, defined in Eq. (7.6) @, =SLMcompensaﬂon(Lom), where L, are the discrete set of

opt
silicone lengths for which the phase range needed to be compensated by the SLM, defined in Eq. (7.5)

SLM = max (<Idler Phase) —min(<Idler Phase) is minimal.

compensation 1.8um< 4 <5.5um 1.8m<4;<5.5um

Numerical trial and error examinations show that good SLM compensation can be done whenever

@, <350[Rad], hence, we used @ as a measure to the compression feasibility and simulated it for

various values of signal chirp and air lengths before and after the nonlinear crystal.

The results are presented in the following tables, with the highlighted colors defined below:

CI)opt value[Rad] Highlighted color
D, > 350[Rad]

200[Rad] < D, < 350[Rad]
100[Rad] < @, < 200[Rad]

@, <100[Rad]

The greener the color is, the compensation scheme is better.

Observing the tables below several conclusions can be deduced:

e Itis easier to compress the MIR pulse in the regime C_ e[-4-107" 1.107"][s’].

e For a given air propagation lengths, the shorter the crystal the compensation is better (less
phase to compensate).
e The transform limit case is not inferior in terms of compensation vs. other signal chirps.
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Chirp 107-25[s”2] Lair 10[m] Lair 8[m] Lair 6[m]
-5 L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
17.56 431.7 456.1 19.15 413.1 431.5 16.43 493.6 485.5
L_air_before 21.88 337.6 369.7 23.47 338.8 333.6 20.75 361.8 387.1
3[m] 26.20 281.0 280.5 27.80 223.1 238.3 25.08 281.3 290.5
30.52 179.4 187.3 32.12 121.5 148.8 29.40 207.2 203.7
34.84 47.9 103.2 36.43 35.3 91.1 33.72 76.6 130.2
39.15 29.2 102.9 38.03 33.7 78.6
-4 L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
13.23 408.7 439.4 10.51 488.1 493.4 12.11 453.8 465.0
L_air_before 17.55 320.6 341.6 14.83 382.1 397.7 16.43 321.3 378.4
3[m] 21.87 213.2 246.2 19.15 273.2 311.9 20.74 244.2 287.0
26.20 112.5 166.8 23.47 184.5 229.7 25.07 172.9 193.2
30.51 52.8 97.5 27.79 113.7 143.6 29.39 72.6 107.6
34.83 21.6 105.4 32.11 19.8 84.4 33.70 15.9 95.8
39.15 123.6 188.7 36.43 17.2 128.0 38.03 24.5 158.3
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
-3 13.23 260.6 338.0 10.50 339.7 391.9 12.10 270.5 347.8
17.54 183.1 241.9 14.82 219.0 294.6 16.42 212.4 254.3
L_air_before 21.86 94.1 150.6 19.14 142.8 200.5 20.74 126.0 174.2
3[m] 26.19 25.2 92.5 23.46 72.2 113.8 25.06 46.5 101.5
30.51 16.9 123.0 27.78 19.4 77.5 29.38 29.8 98.9
34.83 48.1 198.4 32.11 27.8 157.7 33.70 30.8 181.1
39.15 81.8 295.2 36.42 118.2 243.9 38.02 118.1 267.5
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
-2 13.22 177.2 214.8 10.50 226.1 280.0 12.09 210.0 247.4
17.54 102.9 138.1 14.81 161.9 195.4 16.41 130.6 155.4
L_air_before 21.85 25.9 75.2 19.13 86.8 107.5 20.73 45.3 93.6
3[m] 26.18 10.8 137.8 23.45 10.5 94.0 25.06 16.5 120.1
30.50 67.2 222.1 27.78 9.7 160.7 29.38 54.7 194.0
34.82 94.6 309.4 32.10 55.7 245.7 33.70 56.8 290.3
39.14 341.9 397.9 36.42 226.9 340.6 38.02 217.3 388.6
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
-1 13.21 118.2 113.4 10.49 187.2 161.9 12.09 136.3 144.9
17.52 27.2 86.5 14.80 101.5 101.0 16.40 48.5 75.3
L_air_before 21.85 28.5 148.5 19.12 11.1 108.5 20.72 28.3 131.1
3[m] 26.18 44.1 239.8 23.44 5.2 191.2 25.05 11.5 214.6
30.50 81.4 337.0 27.77 43.1 277.8 29.37 57.4 301.5
34.81 347.7 431.5 32.09 127.2 366.0 33.69 183.1 389.7
36.41 341.8 455.1 38.01 391.9 486.4
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
TL 13.20 4.4 89.3 10.48 89.6 83.5 12.07 35.8 81.8
17.52 29.1 169.8 14.80 10.0 111.2 16.40 17.2 143.9
L_air_before 21.84 37.4 255.3 19.12 13.1 193.0 20.72 19.1 234.8
3[m] 26.17 34.2 342.9 23.44 31.9 283.8 25.05 37.0 331.8
30.49 251.8 433.9 27.77 114.1 382.5 29.36 164.8 423.1
32.09 267.4 482.0
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
1 13.20 25.3 185.2 10.47 3.9 139.5 12.07 17.6 162.3
17.52 14.5 280.1 14.79 18.8 223.2 16.39 17.9 246.7
L_air_before 3[m] 21.83 83.4 375.3 19.11 43.4 310.4 20.71 39.5 334.1
26.16 165.1 464.7 23.43 114.4 399.0 25.04 131.5 427.8
27.76 218.0 488.3
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
2 13.19 25.6 288.2 10.47 13.7 228.0 12.07 9.3 275.8
L_air_before 3[m] 17.51 52.5 376.1 14.79 14.9 325.1 16.38 57.8 367.4
21.83 199.5 475.5 19.11 114.7 423.9 20.70 151.3 456.6
L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
3 13.18 53.5 409.7 10.46 34.0 344.7 12.06 27.3 370.8
L_air_before 3[m] 17.50 200.7 499.1 14.78 53.1 433.3 16.38 199.2 470.3
4 L_opt[mm] Delta_SLM[rad] Phi_opt[rad] L_opt[mm] Delta_SLM([rad] Phi_opt[rad] L_opt[mm] Delta_SLM[rad] Phi_opt[rad]
L_air_before 3[m] 0.00 0.0 0.0 10.46 86.8 466.2 12.05 136.2 491.0
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Chirp 101-25[s"2] Lair 10[m] Lair 8[m] Lair 6[m]

-5 L_opt[mm Delta_SLM[rad] Phi_opt[rad] [L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM[rad] Phi_opt[rad]

18.92 388.50 431.63 16.19 480.43  495.96 17.79 440.00 451.19

23.23 298.08 343.67 20.51 377.17 397.35 22.11 282.73 353.38

27.56 205.85 247.78 24.83 244.50 300.27 26.44 213.60 262.59

31.88 125.78 157.07 29.16 177.15 206.68 30.76 130.01 183.01

36.20 34.38 94.47 33.48 98.36 122.71 35.07 102.83 108.59

L_air_before 4[m] 37.79 66.94 70.99 39.39 65.50 92.01
-4 L_opt[mm Delta_SLM[rad] Phi_opt[rad] |L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM([rad] Phi_opt[rad]

14.59 373.00 404.83 11.87 458.37 460.45 13.47 410.76 440.56

18.91 265.08 307.74 16.19 288.77 373.54 17.78 335.11 349.87

23.23 170.82 223.89 20.51 244.11 288.92 22.10 221.45 253.61

27.56 94.02 147.84 24.82 153.07 201.77 26.43 124.87 162.16

31.87 36.41 77.04 29.15 70.08 114.72 30.75 43.27 95.49

36.19 29.77 129.58 33.47 23.03 95.74 35.06 22.05 119.87

L_air_before 4[m] 37.79 67.30 152.55 39.39 151.04 189.15
L_opt[mm Delta_SLM[rad] Phi_opt[rad] |L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM[rad] Phi_opt[rad]

-3 10.27 362.28 399.77 11.86 357.18 357.06 13.46 311.30 315.44

14.58 317.44 303.62 16.18 288.95 260.77 17.78 235.58 231.98

18.90 234.48 208.81 20.50 174.48 168.83 22.10 133.89 154.83

23.22 126.92 120.75 24.82 85.96 106.48 26.42 52.22 77.61

27.54 32.25 82.53 29.14 72.69 100.11 30.74 29.61 122.63

31.87 31.31 147.01 33.46 102.63 182.82 35.06 201.28 206.30

L_air_before 4[m] 36.19 155.48 234.02 37.78 334.22 269.60 39.38 523.53 293.26
L_opt[mm Delta_SLM[rad] Phi_opt[rad] [L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM([rad] Phi_opt[rad]

-2 10.26 325.95 275.07 11.85 314.69 256.04 13.45 258.59 213.96

14.58 212.00 193.58 16.17 208.91 163.01 17.77 150.69 124.85

18.89 133.97 114.40 20.49 92.96 86.53 22.08 70.36 79.75

23.21 13.99 85.74 24.81 42.75 110.70 26.42 23.58 143.32

27.54 23.42 162.11 29.14 23.76 185.31 30.74 103.99 229.63

31.86 81.07 247.47 33.46 164.92 278.58 35.05 484.29 326.31

L_air_before 4[m] 36.18 459.09 335.13 37.78 619.50 377.19 39.37 997.20 415.27
-1 L_opt[mm Delta_SLM[rad] Phi_opt[rad] |[L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM([rad] Phi_opt[rad]

10.25 263.17 169.58 11.85 202.68 138.64 13.44 185.64 118.49

14.57 106.58 96.89 16.16 83.05 73.27 17.76 28.54 84.51

18.88 9.79 109.53 20.48 12.21 132.21 22.08 49.38 155.03

23.21 24.62 180.74 24.80 69.61 216.21 26.41 80.22 239.71

27.54 138.48 275.83 29.13 163.71 303.36 30.73 216.39 327.03

L_air_before 4[m] 31.85 380.49 368.09 33.45 601.11 391.76 35.05 770.85 423.32
TL L_opt[mm Delta_SLM[rad] Phi_opt[rad] [L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM([rad] Phi_opt[rad]

10.24 80.98 78.60 11.84 27.37 90.17 13.43 10.37 102.31

14.56 4.83 112.12 16.16 16.44 134.55 17.76 23.02 176.20

18.88 18.86 194.34 20.48 27.47 223.02 22.08 75.88 270.82

23.20 31.24 280.51 24.80 132.98 320.33 26.40 154.16 359.77

L_air_before 4[m] 27.53 172.49 371.11 29.13 387.88 419.16 30.72 633.26 448.89
1 L_opt[mm Delta_SLM[rad] Phi_opt[rad] [L_opt[mm Delta_SLM[rad] Phi_opt[raL_opt[mm Delta_SLM([rad] Phi_opt[rad]

10.24 80.98 78.60 11.84 27.37 90.17 13.43 10.37 102.31

14.56 31.33 220.67 16.15 32.11 248.36 17.75 77.44 271.95

18.87 95.40 312.30 20.47 96.79 335.97 22.07 164.46 365.22

L_air_before 4[m] 23.19 154.46 401.04 24.79 338.96 424.70 26.40 338.22 464.78
L_opt[mm Delta_SLM[rad] Phi_opt[rad] |[L_opt[mm Delta_SLM[rad] Phi_opt[raL_opt[mm Delta_SLM[rad] Phi_opt[rad]

2 10.23 14.48 226.95 11.83 31.07 264.22 13.42 13.92 304.57

14.55 59.01 313.84 16.15 10.02 361.87 17.74 67.03 392.99

L_air_before 4[m] 18.87 136.37 412.80 20.46 192.72 458.68 22.06 274.50 482.28
3 L_opt[mm Delta_SLM[rad] Phi_opt[rad] [L_opt[mm Delta_SLM[rad] Phi_opt[ralL_opt[mm Delta_SLM[rad] Phi_opt[rad]

L_air_before 4[m] 10.22 67.57 346.33 11.82 92.58 370.00 13.42 97.19 407.72
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10.4.2 Signal conversion efficiency dependence with signal chirp, after SLM compensation

We display the conversion efficiency dependence with the signal chirp.

We define the following quantities:

Ne = Eldler(zf)
- ESignal (Zi)

e o, =std(n7(1)) - A measure to the frequency conversion dependence with wavelength.

- the DFG conversion efficiency.

e 7, is the signal duration (10%-90% knife edge definition) of the signal pulse (modulated
by the SLM) in the beginning of the crystal.

The simulated quantities are exhibited for different values of signal chirp, and for a span of air lengths
before and after the nonlinear crystal. The results are presented in the following tables, with the

highlighted colors defined below:

- Eger (Z¢) (%] Highlighted color
ESignaI (Zi)
20% <1 <25%
15% < 7. <20%
]

n: <15%

Several conclusions can be deduced from the tables below:

e The longer the signal goes through the air, the efficiency deteriorates.

e For a given air propagation lengths, the shorter the crystal the efficiency is better.

e For a given air propagation lengths, the longer the crystal the better the conversion efficiency
vs lambda: std (77(A1)) is lower.

e The transform limit case is not inferior in terms of efficiency vs. other signal chirps.

C, €[-2-10 1-10"][s?] is good range in terms of efficiency.
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Chirp 107-25[s72] Lair 10[m] Lair 8[m] Lair 6[m]

-5 L_opt[mm Tau_s[ps] Eta[%] std(Eta) |[L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

18.92 4.81 19% 0.23 16.19 6.20 20% 0.23 17.79 4.71 19% 0.23

23.23 4.84 17% 0.22 20.51 4.75 18% 0.23 22.11 4.86 18% 0.22

27.56 5.08 16% 0.22 24.83 4.95 17% 0.22 26.44 5.09 17% 0.22

31.88 5.27 16% 0.21 29.16 5.17 16% 0.22 30.76 5.30 16% 0.22

36.20 5.58 16% 0.22 33.48 5.41 16% 0.22 35.07 5.44 16% 0.22

L_air_before 4[m] 37.79 5.62 16% 0.22 39.39 5.78 16% 0.23
-4 L_opt[mm Tau_s[ps] Eta[%] std(Eta) |[L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

14.59 3.72 20% 0.22 11.87 4.11 23% 0.24 13.47 4.15 21% 0.23

18.91 3.82 18% 0.21 16.19 3.78 19% 0.22 17.78 3.74 18% 0.21

23.23 4.06 16% 0.20 20.51 3.95 17% 0.21 22.10 3.91 16% 0.20

27.56 4.31 16% 0.20 24.82 4.05 15% 0.20 26.43 4.16 16% 0.20

31.87 4.46 15% 0.20 29.15 4.29 15% 0.20 30.75 4.46 15% 0.20

36.19 4.92 16% 0.22 33.47 4.62 16% 0.21 35.06 4.71 15% 0.21

L_air_before 4[m] 37.79 5.17 16% 0.22 39.39 5.40 16% 0.22
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

-3 10.27 2.96 27% 0.26 11.86 2.84 22% 0.22 13.46 2.86 20% 0.21

14.58 2.78 18% 0.20 16.18 2.85 17% 0.19 17.78 2.94 17% 0.19

18.90 2.92 16% 0.18 20.50 3.03 16% 0.18 22.10 3.15 16% 0.18

23.22 3.17 15% 0.18 24.82 3.32 15% 0.18 26.42 3.32 15% 0.17

27.54 3.38 14% 0.17 29.14 3.66 15% 0.18 30.74 3.90 15% 0.19

31.87 4.08 15% 0.20 33.46 4.36 15% 0.20 35.06 4.64 15% 0.20

L_air_before 4[m] 36.19 4.79 15% 0.20 37.78 5.05 15% 0.20 39.38 5.20 14% 0.20
L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

-2 10.26 2.02 27% 0.25 11.85 1.92 22% 0.21 13.45 1.95 19% 0.19

14.58 2.03 18% 0.18 16.17 1.96 16% 0.17 17.77 2.06 16% 0.16

18.89 2.05 15% 0.16|  20.49 2.18 15% 016  22.08 23 oS

23.21 2.56 14% 0.16 24.81 2.84 15% 0.16 26.42 3.10 15% 0.17

27.54 3.28 0.17 29.14 3.56 0.18 30.74 3.82 15% 0.18

31.86 4.03 0.18 33.46 4.26 0.18 35.05 4.54 0.18

L_air_before 4[m] 36.18 4.58 0.18 37.78 4.74 0.18 39.37 5.03 0.18
-1 L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

10.25 1.15 26% 0.23 11.85 1.16 21% 0.19 13.44 1.10 17% 0.16

14.57 1.21 17% 0.15 16.16 1.36 15% 0.14 17.76 1.59 15% 0.14

18.88 1.77 0.14 20.48 2.03 0.14 22.08 0.15

23.21 2.54 0.16 24.80 2.81 0.16 26.41 0.16

27.54 3.26 0.16 29.13 3.52 0.16 30.73 . 0.16

L_air_before 4[m] 31.85 3.91 0.16 33.45 4.11 0.16 35.05 4.28 0.16
TL L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

10.24 0.71 25% 0.23 11.84 0.85 20% 0.18 13.43 1.01 16% 0.14

14.56 1.15 16% 0.14 16.16 1.36 15% 0.14 17.76 1.61 15% 0.15

18.88 1.79 0.14 20.48 2.06 0.15 22.08 2.35 0.15

23.20 2.53 0.15 24.80 2.78 0.15 26.40 3.03 0.15

L_air_before 4[m] 27.53 3.16 0.15 29.13 3.39 0.15 30.72 3.62 0.15
1 L_opt[mm Tau_s[ps] Eta[%] std(Eta) |[L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

10.24 1.13 25% 0.23 11.83 1.36 20% 0.18 13.43 1.51 16% 0.16

14.56 1.57 16% 0.16 16.15 1.83 0.15 17.75 1.99 0.15

18.87 2.18 0.15 20.47 2.33 0.15 22.07 2.50 0.15

L_air_before 4[m] 23.19 2.66 0.15 24.79 2.86 0.15 26.40 3.04 0.15
L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

2 10.23 2.01 24% 0.23 11.83 2.15 19% 0.19 13.42 2.38 16% 0.17

14.55 2.49 15% 0.16 16.15 2.65 0.16 17.74 2.95 0.16

L_air_before 4[m] 1887 360  o16] 2046 355 0.16| 2206 3.9 0.16
3 L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)

L_air_before 4[m] 10.22 2.91 22% 0.22 11.82 3.56 18% 0.19 13.42 4.96 15% 0.18
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Chirp 107-25[s/2] Lair 10[m] Lair 8[m] Lair 6[m]
-5 L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
17.56 6.02 - 028 19.15 4.90- 0.28) 16.43 6.41 - 0.29
L_air_before 3[m] 21.88 4.92 0.28 23.47 4.86 0.27 20.75 4.74 0.28
26.20 4.96 25% 0.27 27.80 5.05 24% 0.27 25.08 4.97 25% 0.27
30.52 5.18 24% 0.26 32.12 5.32 24% 0.27 29.40 5.23 25% 0.27
34.84 5.46 24% 0.27 36.43 5.48 23% 0.27 33.72 5.46 24% 0.27
39.15 5.70 23% 0.27 0.00 0.00 0% 0.00 38.03 5.68 23% 0.27
-4 L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta)
13.23 4.76 029 1051 5.11 032 1211 5.25- 0.30
L_air_before 3[m] 17.55 3.73 0.27 14.83 3.88 0.28 16.43 3.76 0.28
21.87 3.94 0.26 19.15 3.85 0.27 20.74 3.80 25% 0.26
26.20 4.22 25% 0.26 23.47 4.10 25% 0.26 25.07 4.07 24% 0.25
30.51 4.38 23% 0.25 27.79 4.20 24% 0.25 29.39 4.35 24% 0.26
34.83 4.71 23% 0.26 32.11 4.51 23% 0.26 33.70 4.54 23% 0.26
39.15 5.44 22% 0.27 36.43 4.98 23% 0.27 38.03 5.23 23% 0.27
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
3 13.23 2.89 - 028 10.50 2.84 031 1210 2.84 0.29
17.54 2.83 0.25 14.82 2.81 0.27 16.42 2.84 0.26
L_air_before 3[m] 21.86 3.06 25% 0.24 19.14 2.93 0.25 20.74 3.07 0.25
26.19 3.38 24% 0.24 23.46 3.22 25% 0.24 25.06 3.22 23% 0.24
30.51 3.88 23% 0.25 27.78 3.45 23% 0.24 29.38 3.69 23% 0.25
34.83 4.62 23% 0.25 32.11 4.14 23% 0.25 33.70 4.41 23% 0.25
39.15 5.20 21% 0.24 36.42 4.89 22% 0.25 38.02 5.08 22% 0.25
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
-2 13.22 1.98- 027 1050 2.04- 031 12.09 1.93- 0.28
L_air_before 3[m] 17.54 2.11 0.24 14.81 1.93 0.25 16.41 1.99 0.24
21.85 2.33 24% 0.23 19.13 2.10 25% 0.23 20.73 2.23 25% 0.23
26.18 3.06 23% 0.23 23.45 2.60 24% 0.23 25.06 2.88 24% 0.24
30.50 3.83 22% 0.24 27.78 3.32 23% 0.24 29.38 3.64 23% 0.24
34.82 4.45 21% 0.23 32.10 4.06 22% 0.23 33.70 4.29 21% 0.23
39.14 5.02 20% 0.23 36.42 4.71 21% 0.23 38.02 4.82 20% 0.23
L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta)
-1 13.21 1.13 025 10.49 1.17- 030| 12.09 1.19 0.27
17.52 1.56 24% 0.22 14.80 1.20 0.23 16.40 1.39 25% 0.22
L_air_before 3[m] 21.85 2.28 24% 0.23 19.12 1.79 24% 0.22 20.72 2.08 24% 0.22
26.18 3.07 23% 0.22 23.44 2.56 23% 0.22 25.05 2.84 23% 0.22
30.50 3.73 21% 0.22 27.77 3.34 22% 0.22 29.37 3.58 21% 0.22
34.81 4.40 20% 0.22 32.09 3.96 20% 0.21 33.69 4.14 20% 0.22
36.41 4.55 19% 0.21 38.01 4.67 19% 0.21
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
TL 13.20 0.99 0.23] 1048 0.74- 0.29| 12,07 0.87 0.25
L_air_before 3[m] 17.52 1.57 24% 0.22 14.80 1.18 0.23 16.40 1.40 25% 0.22
21.84 2.30 23% 0.21 19.12 1.82 24% 0.22 20.72 2.10 23% 0.22
26.17 3.04 21% 0.21 23.44 2.58 22% 0.21 25.05 2.82 21% 0.21
30.49 3.68 20% 0.21 27.77 3.25 20% 0.21 29.36 3.52 20% 0.21
32.09 3.76 19% 0.20
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
1 13.20 1.44 0.24 10.47 1.24 0.29 12.07 1.37 0.25
L_air_before 3[m] 17.52 1.91 23% 0.22 14.79 1.68 25% 0.22 16.39 1.82 24% 0.22
21.83 2.53 21% 0.21 19.11 2.20 22% 0.21 20.71 2.35 22% 0.21
26.16 3.08 19% 0.20 23.43 2.67 20% 0.21 25.04 2.87 20% 0.20
27.76 3.26 19% 0.20
L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
2 13.19 2.35 0.23 10.47 2.04 0.29 12.07 2.15 0.25
L_air_before 3[m] 17.51 2.89 22% 0.21 14.79 2.50 24% 0.23 16.38 2.79 22% 0.22
21.83 3.41 20% 0.21 19.11 3.56 21% 0.21 20.70 3.51 20% 0.21
L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta) [L_opt[mm Tau_s[ps] Eta[%] std(Eta)
3 13.18 3.34 24% 0.23 10.46 2.97 0.28 12.06 3.12 0.25
L_air_before 3[m] 17.50 4.74 20% 0.22 14.78 4.93 22% 0.23 16.38 4.80 21% 0.22
L_air_before 3[m] L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta) |L_opt[mm Tau_s[ps] Eta[%] std(Eta)
4 10.46 6.13 0.28 12.05 6.11 24% 0.24
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10.4.3 Transform limited examination

We examine the transform limited case thoroughly. As before, the simulated quantities are exhibited
for different values of signal chirp, and for a span of air lengths before and after the nonlinear crystal.

The results are presented in the following tables, with the highlighted colors defined below:

pe = ESHG ((zZf ; (%] Highlighted color
Pump \4i
ne >45%
40% < n. <45%
30% < 7. <40%
20% < 7. <30%
10% < 7. <20%
SLM value[Rad] Highlighted color
SLM ympensation > 350[Rad]
200[Rad] < SLM _;, enarion < 390[Rad]
100[Rad] < SLM ., ensaiion < 200[Rad]
SLM gompensation <100[Rad]
o, =std(n(41))[%] Highlighted color
o, >23%
22% < o, < 25%
20% < o, <22%
18% < o0, <20%
16% <7, <18%
n: <16%

compensation

Several conclusions can be deduced from the tables below:

° In terms of both conversion efficiency and compensation quality we wish the crystal
length to be ~10mm
° The longer the signal goes through the air, conversion efficiency fluctuation is smaller
o, =std(7(2)) .
. The following useful formula is deduced:
Lo ~ 7.76+ 4.31-n +5.68( L, ***[m] —3)m—0.795( L,,,*"*"[m] -6 ) [mm]
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3[m]

3.25[m]

3.5[m]

3.75[m]

4[m]

4.25[m]

Lair 10[m]

L_opt[mm] Eta[%]

Lair 8[m] Lair 6[m]
std(Eta) Phi_opt[Rad] |[L_opt[mm] Eta[%] std(Eta) Phi_opt[Rad] [L_opt[mm] Eta[%] std(Eta) Phi_opt[Rad]

149.87

76.68

111.14

196.29

285.76
23% 0.20 116.41 16.22 22% 0.20 144.03 17.82 22% 0.20 172.28
21% 0.20 194.11 20.54 21% 0.20 223.08 22.14 20% 0.20 253.97
20% 0.19 282.80 24.87 19% 0.19 321.56 26.46 18% 0.19 352.63

405.52

97.86

. b 90.66 E

20% 0.18 134.49 17.64 19% 0.18 162.35 14.92 21% 0.18 113.73
19% 0.18 225.66 21.96 18% 0.18 259.14 19.24 19% 0.18 197.37
17% 0.18 311.46 26.28 17% 0.18 342.56 23.56 17% 0.18 288.77
16% 0.18 410.87 30.60 16% 0.18 443.33 27.88 16% 0.18 381.60
15% 0.17 496.58 32.20 15% 0.18 473.49
101.30 6.10 20% 0.19 144.05 7.70 22% 119.03
19% 017 92.16 10.41 83.87 12,01 22% 0.19 72.75
17% 0.16 168.31 14.74 18% 0.16 119.08 16.34 18% 0.16 145.92
16% 0.17 248.32 0.16 196.99 20.66 16% 0.16 226.02
0.16 348.63 0.16 283.99 24.98 15% 0.16 322.80

0.16 432.51 0.16 378.62

0.16 471.81

18% 0.17 155.17 0.19 121.59
0.22 80.46 0.18 78.67 13.44 17% 0.15 90.44
0.14 109.93 0.14 137.22 17.76 15% 0.14 165.14
0.15 188.82 0.15 226.77 22.08 0.15 262.15
0.15 284.77 0.15 314.52 26.40 0.15 344.35
0.15 373.01 0.15 412.19 30.72 0.15 446.46

0.15 469.54 0.15 499.75
17% 0.17 120.72 0.20 99.84 6.22 16% 0.15 142.53
0.16 69.28 0.13 94.77 10.53 22% 0.20 82.44
0.13 138.75 0.12 171.16 14.86 0.13 119.70
0.14 222.02 0.14 251.30 19.18 0.13 199.88
0.14 314.21 0.14 351.74 23.50 0.14 285.21
0.14 404.65 0.14 434.74 27.82 0.14 381.72
32.14 0.14 473.15
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While o, = std(77(4)) gives some intuition about the conversion efficiency, it is more informative to

visually observe the conversion efficiency curves. For demonstration, we plot the conversion efficiency
curves for different crystals lengths and for different air propagation lengths: 3m and 4.25m.

; n(k), Lcwsla\:.'r'?[mm]’ LEelnre:3[m] n(x), Lcwsla\:12[mm]’ LBarore::}lm]
o
%W ' ‘ |
05 MM‘*‘ Mf‘ml i
& ' ‘
25 3 35 4 45 5 2 25 3 3.5 4 45 5

[um] [um]

}‘nﬂ\er
=3[m] MR, L gy=20-7Imm),

jl'Mllel'
M0, L gygr=16-40mm), L

=3[m]

Before

Before

%25 3 35 4 45 5 25 5 35 4
7”|dler fum] ;’uﬂer fum)
(), Lcrystal:25[mm]‘ LBelureza[m] (k) LCryslal:zg'SImm]' LHelme:s[m]

N L. =6.2[mm] L =425[m] n@), L. . =105[mm] L =425m]

Before Before

“\.ﬂﬂ\‘}r“*/‘\,ﬁﬂH

Crystal

Crystal

05

35

35 4 45 5 5
“dter (um] Yydler [um]
n(x), LCryslaI=14 8[mm], LBeIore=4'25[m] (%), LCrysIaI=19 1[mm], LEelore:4 25[m]

05

NHN 0 Wi il ) 5
2 25 3 35

0 il - -
2 25 3 35 4 45 5
7“|nler (um] ;"idler {um]
n(x), LC“5|EI=23,5[mm], LBelure=4'25[m] n(x), LCrysIalzzy 8[mm], LE!efure=4'25[m]

2 25 3 35 4 4.5 5 2 25 3 3.5 4 4.5 S

[um] [um]

Midter Midler

Figure 34. Conversion efficiency dependence with crystal length for different air propagation lengths.
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We can visually deduce from the above what schemes are good in terms of conversion efficiency. We

label good schemes with green (left columns):

Lair 10[m] Lair &[m)] 6[m]
L_opt[mm] Eta[%] L_opt[mm] Eta[%] L_opt[mm] Eta[%]
3[m]
26.17 21% 23.44 22% 25.04 21%
30.48 19% 27.77 20% 29.36 20%
3.25[m]
23.27 20% 24.87 19% 26.46 18%
27.58 18% 29.18 18% 30.78 17%
3.5[m] 6.28 23%
10.60
21%
19%
24.68 17% 20.28 17% 23.56 17%
29.01 16% 30.60 16% 27.88 16%
33.33 15% 32.20 15%
3.75[m] e 6.10 20% 7.70 22%

4[m] 5.92 18% 7.52

4.25[m]

105

19% 9.12

24%
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10.5 Appendix E- Pulsed four wave mixing interactions derivation

We describe the time dependent evolution of Four Wave Mixing in dielectrical waveguides via third

order susceptibility. Let’s assume we are operating in a single mode waveguide.

(E.1E, = 3—:1(A(z ®)+A'(2,-0))E,(x, Y, w)e " e
-~ E(z,0)
Let’s write Maxwell Equations in the time domain:
oB — L= =
(E. Z)VxE——E = VxE(z,w) =—iwB =—-iouH
OE 0P

(E.3) VxH =€E+7N":>VxI-_|(Z,a))=ia)8|§(z,a))+ia)ENL(Z,a})

Let’s write Eq. (E.2) and Eq. (E.3) for two fields labeled 1 and 2:

(E.4) VXE,(z,0) = —iouH,

(E.5) VxH,(z,0) = iwcE, (2, ®) +i0Pn.1(z, ®)
(E.6) VxE,(z,0) = —iouH,

(E.7) VxH,(z,0) = iwcE, (2, ) + ioPn 2 (2, ®)

Using the following identity:

It is easy to deduce:
(E9)V- ( xH, +E, ><|-_|1)=ia)( = NL,Z—EZ*'ENL,l)
We can therefore write:

(E10) [V-(E xH,+E, xH,)dxdy = [0, (E xH_;t+I§2t*><|-_| ) dxdy+j? (E.xH;+E; xH,) dxdy =
, XHH) dxdy + ¢ ds(E xH, fi=[8,(EyxHj + B, x Hy, )dxdy

0

Let’s assume that Ez is a waveguide mode. Hence, it solves Eq. (E.6) and Eq. (E.7) with PNL’Z(Z,a)) =0.
We'll therefore get (Eq. (E.9) together with Eq. (E.10)):
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(E-11) [8, (B, xHy + B, xHy,) dxdy =—io[ E,"- Pusdxdy
Now, let’s expand the electric field in terms of its eigenmodes, recalling that field 2 is an eigenmode:

(E12)E, =D A(z,0)e " "E, (x,y)

v

Hy, =Y Az, 0)e " H ()
(El3) Ezt = Aﬂ(Z, a))e*iﬁu(z,w)Z Ety(x’ y)

H_2t _ A# (Z, w)e—iﬁ;z(l,w)z Ht# (X, y)

Substitution Eq. (E.12),(E.13) into Eq. (E.11) and using the orthogonally relation, yields:
—_ * 1
(E.14) [[ E, (%, ¥)x Hy, (x, y)dxdy = =%

(z,0)

(E.15) dAﬂdz =-io[[Pua(z,0)-(E, e ) dxdy

It's time to describe the nonlinear third order susceptibility phasor of a centrosymmetric homogenous
material. It can be shown that the third order susceptibility phasor elements that contribute to the

polarization in the x direction are:

. X
(E-16) B Ziow = Zar Kooy = Koo = Loy =75
And to the polarization in the y direction:
. _ _ _ _ X
(E17) Py Zyyyy _Z:E'Zyyxx _Zyxxy _Zyxyx _?

We can therefore write:
(E-18)P,(t) = 5o 1:E.° () + %-3& (DE,*(t) = £,2:E, () (E (M) +E (1))

(E-19)P, (1) = £0%:E, (1) + & % 3E,(NE (M) = 51E, () (EZM) +E,2()
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(E.20) P(t) = 5013[ > Ej(t)Ej(t)J E(t)

jexy

(E21) R(t)= z( > E,—(t)E,-(t)jEk (®)

jex,y

(E.22) P(T, @) =¢&,2, Z Ej(F,a))*Ej(F,a))*Ek(F,a))

jex,y

where k stands for the transverse indexes, x or y.

We wish to incorporate Eq. (E.22) into Eq. (E.15):

—dA (Z,a)) i D(F = *,if(z,0)z H ip(z,0)z = *
(23 —— = -io[[P(F,)-(E, ¢ ) dxdy = —ice J'J'Zk:Pk(r,a))Etyk dxdy
dA (z, ] _ )
/t(g C{)) = —Ia)golse'ﬂ(Z,w)ZJ.J. Z Z Ej(r,a))*Ej(F,a))*Ek (F,Q))Ek (F,(())dXdy
z

kex,y jex,y

We substitute the electric field phasor as defined in Eq. (E.1):

E(z,0) = %(A(Z, )+ A'(z, —a))) E, (X, y, w)e #@o”

We assume that 4 pulses are inserted into our grating. We write the fields amplitude as superposition of
pulses:

(E.24) A(z,0) = A(z,0) + A (z2,0)+ A(z,0) + A, (2, ) = Z A, (2, )

a=1,2,3,4
We assume that amplitude Aﬁ(z,a)) is centered around a)ﬁ,when the central frequencies obey

W, + @, = @, +®,. According to the definition (8.12), one deduces A(z,0) 1dA(2 )

dz 2 dz
0 €[L,2,3,4].

, Where

The spectral field envelope centered around @, dependence with the optical axis is determined by:

1dA;(z,0)

Pl —iwe, g 00 jj > E,(F,0)*E,(F, 0) *E,(F, 0)E, (F, w)dxdy =

k,jex,y

(E.25)
E;(F,0)e " (A, (z,0) + A, (2,-) )*

:—ia)gozs%”dxdy Z i Ej(Fva))eiiﬂ(Z'mz(Aﬂ(Z,a))-l-Aﬂ*(Z,—a)))* E, (7, )

k,jex,y a,B8,y=1 R . .
E, (F,)e " (A (z,0)+ A’ (z,~0))
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In order to simplify the convolution integral, we assume that the electric field profile merely changes
within the spectral envelope of the pulses. In order words:

(E.26) E(F, @)e " (A, (z,0) + A, (2,~0) ) ~ E; (T, ,)e " (A, (z,0) + A, (2,~0))

We denote E(F, a)a) = Ea. Under the following simplification, Eq. (E.25) considerably simplifies:

> E|(F,@,)E(F,0,)E,(F,0,)E (F,0;)-
k,jex,y
(E.27) dAa(Z,a)) a)80;(3 gz ﬂdxdy 4 e’iﬂ(z’”)z(Aa(z,a))+Aa*(z,—a)))*
dz > e (A (z,0)+ A (2,-0))*
a,fr=1 e_iﬂ(z,w)z (A}/(Z,a))+ A;(Z,—a)))
e V(A (z,0)+ A, (2,-0))*
dA y . 8(z.0)2 - = - = — -if(z,0)z *
E.28) 2O _ “"907532 a;_l(”dxdyEa.EﬂEy.Eé) e VO (A (2,0)+ A, (2,-0))*

e V(A (z,0)+ A (2,-0))
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We continue with writing the equations for Ai(Z, a)) . The frequency generation terms that contributes

to A(Z, ) are the following:

Convolution term

Permutations

Physical
meaning

A(z,0)* A (2, 0)* A, (2,-o)

A(z,0)* A (2, 0)* A (2,-0)
A(z,0)* A (2,-0)* A (2, 0)
A (2, 0)* A(z, 0)* A (2,-o)
A (2, 0)* A (2,-0)* Az, 0)
A (z2,-0)* A(z,0)* A (2, 0)
A (2,-0)* Az, 0)* Az, 0)

Interaction
term

Ai(z’ a))*A&(Z,C())*A;(Z,—C())

Az, 0)* A(z,0)* A (2,-)
Az, 0)* A (z,-0)* A(z,0)
A (z,-0)* Az, 0)* Az, 0)

SPM

A(z,0)* A (2,-0)*A(z, 0)

A (2, 0)* A (2,~0)* A(z,0)
A (2, 0)* A(z,0)* A, (2,-0)
A (2,-0)* A (z,0)* A(z,0)
A (2,-0)* A(z,0)* A(2,0)
Az, 0)* A, (2,~0)* A(2,0)
Az, 0)* A (2, 0)* A (2,-0)

XPM

Az o)* A (z,-0)* Az, )

A(z,0)* A (z,-0)* A2, 0)
A(z,0)* A(z,0)* A (2,~0)
A (2,-0)* Az, 0)* A(z, )
A (z,-0)* Az, 0)* A(2, )
A(z,0)* A (2,-0)* A(z, »)
Az, 0)*A(z,0)* A'(z,-0)

XPM

A4(Z,a))*A4*(Z,—a))*A(Z,a))

A (z,0)* A (2,~0)* A (2, )
A (z,0)* A(z,0)* A (2,-o)
A (z,-0)* A, (2, 0)* A(z, ®)
A (z,-w)* A(z,0)* A, (2, ®)
A(z,0)* A (2,-w)* A, (2, ®)
A(z,0)* A (2,0)* A (2,~o)

XPM

110




Efficient adiabatic frequency conversions for ultrashort pulses

The equations describing A (Z, ) are introduced:

(E.29)

dAl(Z; a)) - WE Y5 ei/”(Z,w)z
dz 4

The equations describing A, (Z, ) are deduced by replacing 1->2, 2->1.

(E.30)

dAZ(Zy [0) _ _| ngZ?, ei/}(Z,w)Z
dz 4

111

Az(z’a))e—i,b‘(z,(u)z *Az*(zy_a))e—iﬂ(z,w)z *Al(Z, a))e—iﬂ(z,w)z'”‘dxdy

A3(Z, w)e—iﬂ(z,ru)z *AS*(Z,_w)e—iﬁ'(z,w)z *Al(Z, w)e-iﬁ(z,w)z”dxdy

A (z,0)e P * A (z2,-w)e P * A (2, a))e"ﬁ‘z"””” dxdy

As(z’w)e—iﬁ(z,w)z *A4(Z,a))e'iﬁ(z"")z *Ai*(z’_w)e—iﬂ(z,w)zJ'.[dXdy

A3(Z,a))e—iﬁ'(z,w)z *Aa*(z,_w)e—iﬁ(z,w)z *AZ(Z,w)e—iﬁ(z,w)zj-[ dxdy

AA(Z, a))e—iﬁ(z,w)z * AA*(Z, _a))e—iﬁ(z,m)z * AZ(Z, a))e—iﬁ(z,(u)zjj dXdy

2E,-E,E,-
+2E,-EE, -E,
+2E, -
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The equations describing A3(Z, 60) are deduced from the equations describing the spectral amplitude of

A (z, w) by replacing 153,254, 3->1, 4->2:

(E.31)
2E,-E,E, -E
A (2, 0)e PEDT % A (7, 0)e PEOTE £ (7, —)e PO j j dxdy| +2E, -E,E, -E,
+2E, -E,E, -E,
A3(Z a))e—w(z \0)2 *Az (Z a))e iB(z, w)z*As(Z w)e—lﬂ(z (u)zJ' dXdy(3‘ ‘4)
dA(z,0) . we,y, e’ i . i i 2|E4|2|E3|2
@) __j Pooks A, (2, w)e PEDT % A (7, —@)e PO % A (7, w)e P j j dxdy| '
dz 4 +4|E, -,

AZ(Z, a))e—iﬂ(z,w)z * A;(Z, _a))e—iﬂ(z,w)z * A3(Z, a))e—iﬂ(z,w)z‘[[ dXdy

The equations describing A4(Z, ®) are deduced from the equations describing the spectral amplitude of

A;(z, @) by replacing 3->4, 4->3.

(E.32)
2 E4
A (z,w)e 7@ x A (2, 0)e P * AT(2, a))e"ﬁ‘“’“”dxdy +2 E E ,-E,
E -E,
AA(Z a))e i(z, zo)Z~kA4 (Z w)eflﬁ(z m)Z*A (Z a))e ip(z, m)zj’ dXdy(3| |4)
dA,(z,0) . we,y, """ i . i i 2|E4|2|E3|2
@) __§ Péoks Ag(z,a))eflﬂ(z,w)z A, (z,—w)e F@o? *AA(z,a))eflﬁ(Zyw)ZJ'J' dxdy
dz 4 = EP
4|E, -E,|

— 12| = |2
A (2, 0)e 7@ * A" (2, —w)e P * A (2, a))e'ﬁ‘z"‘”zﬂdxdy[2|E | |Ej|

A, (2, w)e PEDT % 7 (7, —@)e PO % A (2, 0)e O j j dxdy
+4‘E E‘
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We define the following integrals:

(E.33) ) = %_I.J. dXdy( E3 ) E4

(E.34) 14,

= M :%HdXdy(‘EimE, 2

The equations deduced are the following:

(E.35)

dA (z, ®)

dz

(E.36)

dA,(z, ®)
dz

(E.37)

dA(z, w)

dz

:—ia)g /{ eiﬂ(z,w)z
043

:_ia)g /1/ eiﬂ(z,w)z
o043

— —ia)€0;(3 eiﬁ(z,a))z

TA(2@)e A (2,000 A (2, ~w)e P+ ]
% A (z,0)e P * N (z,-w)e P * A (2, 0)e " +

ty oA (2, )€ P E A (2, —)e T * A (2, )€ 4
A2, 0)e P F AN (2,—@)e P ET* A (2, 0)e I +

,U14A4(Z a))efiﬂ(z,a;)z *A4*(Z _a))efiﬁ(z,w)z*Ai(Z a))e’iﬂ(z'“’)z

A2 @)% A (2, 0)e PO A (2,-p)e P 4

a2 A (z, w)e Pz * A (z, B A (z, w)e P

1, A (2, @) PE * N (2,—w)e PO * A (2, ) PO 4
Hy 3B (2, )8 P A (2,—@)e O *A, (2, 0)e P 4

,u24A4(Z a))efiﬂ(z,m)z *A;(Z _a))efiﬂ(z,(u)z *AZ(Z a))e’iﬂ(z’“’)z

A2, 0)e PETx A (7 0)e PR x A (7, —)e FEO7T 4]

553 (2, 0)6 00 * A (2, —~0)e PO A (2, @) PO 4

,U3’4A4(Z,a))e—iﬂ(z,w)z *AA*(Z’_a))e—iﬂ(z,w)z *AB(Z,a))e'iﬂ(Z"")Z I
1A (2, @) 0 * N (2,-w)e P * A (2, w)e P +

o 5B, (2, 0)e P * AT (2,~@)e P * A (2, 0)e P

113



Efficient adiabatic frequency conversions for ultrashort pulses

(E.38)
_ylmAi(Z’a))e—iﬂ(z,w)z *Az(La))e—iﬁ(z,w)z *%*(Z,—a))efiﬁ(z'“’)z N _
/u;,4 A4(Z,a))efiﬁ(2,w)z *A:(Z’_a))e—iﬂ(z,w)z *A4(Z,a))efiﬁ(z’m)z +
dA, (z,w . _ § ] ) j
AA(EI : =g, €7 | 1, A (2, 0 * A (2,~0)e™ I H A2, 0)e 4
Z | i 1 .
t A (2, @) * N (2,—0)e N A (z, 0)e T+
ty o A (2, 0)e P N (2,—w)e O x A (2, 0)e
Define

(E.39)C,(z,0—w,) =B,(z,0) = Aﬂ(z,a))e—iﬂ(w,z)
We continue with rewriting the equations for Bl(Z, a))

dAi(Z,CO) _ d (Bl(zia))eﬂﬁ(z’w)z) _ dBl(Z,(U) e+i/3(z,w)z
dz dz dz

dAi((jZ,CU) _ dBl(gZ, CO) e+iﬂ(z,(u)z + |ﬁ((0, Z)Bl(Z, a))e+iﬁ(z,w)z + | (azﬁ(a), Z))(Z _ Zin) Bl(Z, a))eJriﬂ(z,(u)z
Z z

+i0, (B(®,2)2)B,(z, w)e" " =

We”ﬁ“”” +iB(w,2)B,(z, w)e ™ +i(8,B(w,2))(2-2,,) B,(z, 0)e™ " =
z

Y Bs (2, @) * B, (2, a))*Bz*(Z’_w) +% B,(z,0)* Bl*(zl —0)*B,(z,w) +

e, €7 ,B,(z, 0)* B, (2,~®)*B,(z,w) + H3B(2, 0)* B, (z,-@)*B,(z,0) + | =

4B, (2, 0)* B, (z,—®)*B,(z,)

Hence:

(E .40)
dBl((jz, w) _ -iB(w,2)B,(z,0)-i(0,8(w,2))(2-2,) B,(z,0)

i
2
- ia)80;(3 glftzen ﬂl,sz(Zv ®)* B;(Z, -w)* Bl(zv o)+ ,LLL3B3(Z, ®)* B;(Z, -w)* Bl(z’ o) +

;LL4B4(Z,a))*B4*(Z,—a))* B,(z,w)

_7|m B3(Z, a))* B4(Z, a))* B;(Z, _a)) + Bl(z! a))* Bl*(z’ _w)* Bl(zi w) +_

Using the same mechanism presented in Eq. sets (B.23) — (B.27), the equation in the time domain reads:
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(E.41)
dC,(z,t)
dz

-3 (Blo+0,2)C,(z,0+w)-1(0,8(w+@,7))(2-12,)C, (2. 0+®))
]/th3(Z,t)C4(Z,t)C2*(Z,t)

—ig, 1.3 0+ @)T
23 @+ 1) (M12|C2(z,t)|2+;1113|C3(z,t)|2+;11,4|C4(z,t)|2+%|Cl(2,t)|2jcl(2,t)

In the same manner we deduce:

(E.42)
%=—i:rl(ﬂ(w+w2,z)cz(z,wmz)—i(azﬂ(mwz,z))(z—zm)Cz(z,wmz))
7mCs(2,1)C,(z,1)C, (z,1)
Tz (@ @) [ﬂl,z C.2 0 + 11,4 ICS(Z,t)IZ+#2,4|C34(2,t)|2+ﬂ22 C.(2.)] jC @9
(E.43)
%:—iS_l(ﬂ(w+a)3,Z)Cs(z,a)+a)3)—i(5z,3(a)+a)31Z))(Z_Zin)Cs(Z’aH'a’s))
7mCi(Z,1)C, (2,1)C, (2,1)
Tz (@t )3 [ﬂ13|c @O + 4 [Co(2. 0 + st [Ca(2 0 +222 [0, 2.0 ]C (2.0
(E.44)
ElLD 51 (p0+ 0, 2)C, @0+ 0) 10,5+ 0,D)(2-2,)C, 2.0+ 0,))

7mCi(z,1)C, (2,0C5 (2,)
—ig 1,3 (0 +@,)3 (

144 |CLZ O + 5,4 |C, (@O + 1154 |Cy (2, 1) + 2228 “c, () jo (2.1)

and g4 = p;; :%IJ.dXdy(‘Ei‘z‘Ej‘2+2‘Ei.Ej‘z).
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Figure 10. Adiabatic evolution. By adiabatically changing the phase mismatch parameter along the crystal optical
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Figure 11. Main figure: Conversion efficiency map as a function of the generated wavelength (y-axis) and the
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Abstract

Sensing ultrafast phenomena’s demands ultrafast sources in diverse spectral regimes. Such inherently
broadband source can among others be generated using frequency conversion of an ultrafast pulse.
In this thesis, we developed a framework for nonlinear optical generation of ultrashort pulses through
adiabatic frequency conversions evolution, incorporating both numerical evaluations and experimental
validations. These include generalization of the frequency conversion process to the ultrashort regime,
developing the numerical simulation for the nonlinear processes, and obtaining a robust general scheme
for the design of adiabatic varying phase mismatch crystals also applicable to high-order QPM
techniques. With the latter we design and investigate a novel SHG crystal with unmatched robustness
under both environmental conditions and characteristics of the incoming pulse, demonstrate pulse
shaping using spectral phase manipulations done before the nonlinear crystal, and obtain a design of an
efficient robust optical scheme for a DFG pulse compression, with the incorporation of two photon
absorption, a parasitic effect that has been lacking in all previous research on adiabatic frequency
conversion, and which was found to be of great importance. Finally, we present the concept of adiabatic
Four Wave Mixing frequency conversion. We present a general propagation equation for four-wave
mixing derived from Maxwell’s equations, capturing the full frequency and time domain nonlinear pulse
propagation effects for wave-guided interactions. Last, we present that the obtained equations can be
simplified to reveal the SU(2) symmetry in FWM, which leads to an analogy with rapid adiabatic passage
in other two-level atomic systems.
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